Translate

2012년 6월 30일 토요일

우주 이야기 57 - 별의 최후 4



 Type II 초신성



 1940 년대 초신성을 조사하며서 그 스펙트럼에 따라 초신성에는 수소흡수선이 없는 Type I 과 수소선이 있는 Type II 가 있다는 사실이 밝혀졌다. 오늘날 밝혀진 바에 의하면 Type II 초신성은 적어도 태양 질량의 8배가 넘는 항성의 최후에 발생한다. 단 태양 질량의 40 - 50 배 이상이 되는 경우 극초신성이 될 수 있어 이와는 다소 다른 메카니즘을 보인다고 생각된다. 


 Type II 초신성은 주로 은하계의 나선팔에 생기며 특히  H II region 에 잘 생기는 것으로 알려져 있다. H II region 은 오리온 성운 처럼 가스 구름과 이온화 가스가 모여 있는 곳이며 여기서 별들이 탄생하는 것으로 알려져 있다. 


 Type II 초신성은 앞서 설명했듯이 거대한 별들의 최후이다. 이 별들은 탄소 보다 무거운 원소를 연소시키며 더 무거운 원소를 합성한 후 그 원소가 밀도차에 의해 아래로 내려가면서 마지막엔 양파 껍질 같은 구조를 이루게 된다. 이런 별들은 높은 중심 압력과 온도로 인해 연소 속도가 매우 빠르다. 따라서 그 수명은 기껏 수천만 년에서 수백만년에 불과하며 태양보다 아주 빨리 연소되어 사라진다. 



(거대 항성의 말기에는 위와 같이 원소별로 층이 생기게 된다. 각층은 실제 크기는 아니다. 물론 철이 생기는 순간 폭발하게 되므로 위의 그림은 개념도이다.  CCL. 에 따라 복사 허용 저자 표시  저자 R. J. Hall)




 (각 원소가 합성된 후 주로 연소되는 시간  출처 : Wiki )

 위의 도표에서 보듯이 태양 질량의 25배 정도 되는 별에서는 수소가 연소된 후 점점 무거운 원소가 연소될 수록 다음 원소로 가는 시간이 짧아지며 온도와 밀도가 기하 급수적으로 올라가게 된다. 마침내 니켈이 생성되고 원자핵 붕괴를 통해 철이 생성되는 순간 더 이상 핵융합 반응으로 에너지를 만들지 못하기 때문에 별은 중심부로 붕괴되기 시작한다. 별의 일생동안 강한 중력으로 붕괴되는 것을 방지해 주던 핵융합 에너지가 더 이상 그 기능을 할 수 없기 때문이다. 


 마지막으로 중심부 붕괴를 막아주는 것은 백색왜성에서와 같이 전자의 축퇴압이다. 그러나 찬드라세카 한계에 이르게 되면 더 이상 이를 막아줄 수 없게 된다. 중력이 이기는 것이다. 이렇게 되면 니켈과 철로 된 핵은 최대 초속 7만 km, 혹은 광속의 23% 에 달하는 속도로 붕괴되기 시작한다.


 이 시기 별에서는 감마선을 비롯 여러가지 에너지 및 입자가 튀어나오지만 주변 물질과 잘 반응하지 않는 입자인 뉴트리노 (Neutrino) 를  제외하고는 별의 밖으로 뛰쳐나오지는 못한다. 따라서 초신성 폭발시 상당수 에너지는 뉴트리노 형태로 나오게 된다. 

 중심부로 붕괴되던 핵은 마침내 강력 (strong force) 에 의한 중성자 끼리의 반발력으로 인해 멈추게 된다. 이 순간 엄청난 속도로 중심부로 밀려오던 물질은 여기서 중성자 핵과의 충돌에 의해 엄청난 충격파로 반전하게 된다. 마치 이것은 단단한 콘크리트 벽에 부딪힌 공이 반대 방향으로 튀어 오르는 것과 같다.


 이 순간 별은 다시 밖으로 폭발하게 된다. 그리고 이 때 중성자성이 되는 초신성의 중성자 코어의 에너지는 1000억 Kelvin 에 이른다고 생각된다. 이 순간 엄청난 에너지에 의해 철보다 무거운 수많은 원소들이 생성되게 된다. 앞서 이야기 했듯이 이 때 중심부에서 발생하는 에너지는 내부가 너무 조밀하기 때문에 뉴트리노 이외의 입자는 잘 빠져나갈 수 없다.


 Type II 초신성 폭발시 뉴트리노 버스트로 빠져나가는 에너지의 양은 무려  1046 Joule 에 달한다. 그리고 그외 폭발시 빠져나가는 에너지는 1044 Joule 에 달한다. 사실상 에너지의 99% 가 뉴트리노의 형태로 빠져나가는 것이다. 그럼에도 초신성의 폭발 순간 뉴트리노를 제외한 에너지만으로도 은하계 만큼 밝게 빛나게 된다.    


(초신성 폭발. a : 내부에서 철의 핵이 생성, b : 찬드라세카 한계를 넘게 되면 중심부로 붕괴되고 핵의 내부 물질은 양성자와 전자가 반응 그대로 중성자로 변함, c : 내부로 더 압축되어 내부 핵은 중성자별의 상태가 됨. d : 핵의 밖에서 중심부로 붕괴되던 일반 물질들은 여기서 핵과 충돌 외부로 충격파를 전달 (붉은색 화살표) e :  충격파와 뉴트리노가 밖으로 전달  f : 내부 핵에 중성자 성을 남기고 초신성 폭발  CCL 에 따라 복사 허용 저자 표시  저자  :  R.J. Hall ) 


 (Type II 초신성 폭발시의 컴퓨터 시뮬레이션) 





 ( '우주의 고리' 허블 우주 망원경이 포착한 초신성 1987A. Type II 초신성이다. 이 초신성이 폭발한 것 자체는 허블 우주 망원경이 발사되기 전이었다. 따라서 폭발 자체를 관측하진 못했지만 폭발 후 잔해를 추적하는 일은 가능했다. 이 초신성은 거성 단계에서 주변으로 항성풍의 형태로 상당한 성간 물질을 내뿜었고 그것이 고리 형태로 남아있었다. 위의 사진을 참조하자 (자세히 보려면 클릭해서 원본 참조) 

  폭발후 강력한 충격파가 폭발후 초신성 잔해를 사방으로 밀어냈고, 이것이 2만년전에 거성 단계에서 형성된 고리에 충돌하는 모습이 마치 네온 사인 같다. 이 모습을 허블 우주 망원경이 94년 부터 2004년까지 추적했다. 마지막에 고리가 마치 네온 사인처럼 빛나는 영상이 보일 것이다. 초신성 폭발 후 충격파는 폭발 후 상당한 시간 동안 엄청난 속도로 우주로 퍼져나간다.   A time sequence of Hubble Space Telescope images, taken in the 9 years from 1994 to 2003, showing the collision of the expandingsupernova remnant with a ring of dense material ejected by the progenitor star 20,000 years before the supernova.  This file is in the public domain because it was created by NASA)  


  대략 태양 질량의 8 배에서 25배 정도 되는 별은 초신성 폭발과 함께 중심에 중성자 별을 남기는 것으로 생각된다. 그리고 20 에서 25 배 이상인 경우 중심부에 블랙홀을 남기는 것으로 생각된다. 


 이와 같은 표준 모델은 태양 질량의 40  - 50 배 정도 되는 별에서는 정확하지 않다. 이 경우에는 극 초신성을 만들며 내부에서 블랙홀이 발생해서 별을 삼킨다고 생각한다. 극초신성 (Hypernova) 에 대해서는 다음에 설명할 것이다. 


 한편 Type II 초신성은 그 밝기의 지속 정도에 따라 빨리 사라지는 L (linear) 형과 P (Plateau)  형으로 나눈다. 또 Type IIn 과 IIb 같은 아형도 존재한다. 



(Type II 초신성의 밝기 지속시간에 따른 분류  CCL 에 따라 복사 허용 저자 표시  저자 : Xenoforme


 (다음에 계속) 

댓글 없음:

댓글 쓰기