(출처: 사이언스/Max Planck Institute for Plasma Physics)
핵융합은 궁극의 차세대 에너지원으로 불리고 있습니다. 우주에서 가장 풍부한 원소를 에너지원으로 사용할 뿐 아니라 막대한 에너지를 얻을 수 있기 때문에 고갈의 걱정없이 마음대로 사용이 가능하기 때문이죠. 위험한 방사성 폐기물이 별로 없다는 것도 큰 장점입니다.
하지만 문제는 핵융합 반응을 안정적으로 유지하기가 매우 어렵다는 것입니다. 사실 핵융합 반응을 통해서 전력을 생산하는 일은 현재로써는 생각하기 힘들 만큼 일단 핵융합 반응을 제어하는 것 자체가 어렵습니다. 수소 폭탄과는 달리 지속적으로 반응을 유지해야 하기 때문입니다.
문제의 핵심은 섭씨 1억도로 치솟는 뜨거운 플라즈마를 제어하는 것입니다. 일반적인 물질은 이 열을 견딜 수 없기 때문에 보통 자기장에 플라즈마를 가두는 방식을 사용합니다. 이 중에서 가장 널리 연구된 방식은 구소련에서 1950년대 개발된 토카막(Tokamak) 방식입니다. 현재 ITER 같은 차세대 거대 핵융합 장치 역시 토카막 방식을 사용합니다.
그런데 자기장 방식 가운데서 도넛 모양의 자기장을 만드는 토카막 방식이외에 1951년 미국 프린스턴 대학의 라이만 스피처 (Lyman Spitzer at Princeton University)가 고안한 스텔라레이터(stellarator)라는 장치가 있습니다. 이 장치의 특징은 타원 모양의 자기 코일을 서로 조금씩 회전하면서 배치해 자기장의 강약에 따라서 스스로 압축되는 플라즈마 핀치 효과를 사용한다는 것입니다.
스텔라레이터와 토카막 방식 모두 장단점이 있는데, 1970년 대 이후 연구는 토카막 방식에 집중되었습니다. 토카막 방식이 플라즈마를 가두는 데 더 효과적이었기 때문이죠.
하지만 토카막 방식에도 문제는 있었습니다. 플라즈마에 전류를 흘려보는 방식인데, 이 전류가 쉽게 불안정해지거나 혹은 중단되면 핵융합 반응이 중단되는 것이죠. 반면 플라즈마에 전류를 흘릴 필요가 없는 스텔라레이터는 훨씬 안정적으로 플라즈마를 농축할 수 있습니다. 이론적으로는 말이죠.
최근까지 가장 강력한 스텔라레이터 핵융합 장치는 일본이 1998년부터 운용한 Large Helical Device (LHD) 장치였습니다. 하지만 이보다 더 큰 스텔라레이터를 만드는 작업은 쉽지 않았습니다. 이유는 각 초전도 자석이 mm 이하의 매우 정확한 각도로 조금씩 틀어져야 하기 때문이죠. 완벽한 디자인의 스텔라레이터를 만드는 일은 매우 어려웠습니다.
미국의 연구자들은 역사상 가장 강력한 스텔라레이터 기기인 National Compact Stellarator Experiment (NCSX)를 개발하려 했지만, 2008년 이 문제로 인해 가격이 급격히 상승하면서 결국 중도에 포기할 수 밖에 없었습니다.
한편 비슷한 연구를 진행했던 독일의 연구자들 역시 많은 어려움을 겪었습니다. 벤델슈타인 7X Wendelstein 7-X (W7-X)라는 이 스텔라레이터는 이 종류의 기기로는 역대 가장 강력한 장치인데, 각각의 초전도체 자석 코일의 크기가 높이 3.5m, 무게 6톤에 달합니다. 이를 모두 정확하게 mm 이하 단위로 각도를 맞춰 연결하는 일은 보통 여려운 작업이 아니었습니다. (동영상 참조)
(동영상)
지름 16m에 불과하지만, 엄청난 크기의 초전도체를 액체 헬륨으로 냉각시켜 절대 영도에 가깝게 만드는 동시에 내부의 플라즈마를 1억도로 유지하는 일은 극도로 어려운 과제였습니다. 결국 2006년 5억 500만 유로였던 건설비는 2015년에는 10억 6000만 유로까지 치솟았습니다. 독일 정부의 결단이 없었다면 완성되지 못했을 이 핵융합 연구 시설은 마침내 완공되어 이제 실제 가동을 눈앞에 두고 있는 상태입니다.
과연 W7-X가 이전 토카막에 밀려 이제는 마이너의 위치로 내려간 스텔라레이터를 복귀시킬 수 있을지는 아직 장담하기 이릅니다. 최소한 이 장치는 스텔라레이터를 제작하기 매우 힘들다는 사실은 증명했지만, 아직 성능을 보여주지 못했기 때문이죠.
하지만 극도로 정밀한 핵융합 연구 기기를 조립하는 데 성공했다는 것 자체가 기술의 진보를 보여주는 것이기도 합니다. W7-X의 제작을 위해서 슈퍼컴퓨터 시뮬레이션을 통한 매우 정교한 수치 계산과 제작 및 조립 과정이 있었다고 합니다.
이렇게 기술이 진보하면 결국에는 이전에는 가능하지 않았던 일도 가능하게 되지 않을까하는 기대가 생기는 것은 당연합니다. 과연 가까운 시일내로 큰 진전이 있을지 궁금하네요.
참고
댓글
댓글 쓰기