기본 콘텐츠로 건너뛰기

나사의 금성 로버 계획 - 지옥에서 살아남는 로버 만들기



(원자력 스털링 엔진을 사용한 금성 로버의 상상도.  출처: 나사)
 나사는 태양계의 여러 극한적 환경을 탐사해왔지만, 아직 정복하지 못한 장소도 있습니다. 최소한 수십km 두께의 얼음 밑에 있는 것으로 보이는 목성의 위성 유로파의 바다나 표면 온도가 섭씨 500도에 달하는 금성의 표면이 그런 장소라고 할 수 있죠.
 물론 금성 표면에는 이미 탐사선을 보냈지만, 사실 표면의 극한적 환경 때문에 제한적인 탐사만 가능했을 뿐입니다. 화성처럼 로버를 보내 구석구석 탐사를 하지는 못했다는 것이죠.

 금성의 대기는 이산화탄소에 의한 강력한 온실효과로 인해 섭씨 500도에 달하는 고온과 지구의 90배에 달하는 높은 기압을 자랑합니다. 이런 이유로 구소련과 미국의 금성 착륙선들은 극한의 환경에서 버틸 수 있는 능력에도 불구하고 착륙 후 바로 연락이 끊기거나 혹은 수 시간 이내로 생을 마쳤습니다.
 사정이 이렇다 보니 사실 금성이 화성보다 더 가까운데도 불구하고 누구도 금성 표면에 로버(Rover)를 보내지 못했습니다. 화성 표면에는 벌써 4번째 탐사 로버인 큐리오시티가 활약 중이고 앞으로도 더 많은 로버를 보낼 계획이지만, 금성은 서류상으로만 계획이 존재하죠. 그러나 개발은 진행 중입니다.
 금성 로버 개발에서 가장 곤란한 부분은 바로 전자 계통입니다. 지금까지 만든 어떤 반도체나 전자 기판도 이런 환경에서 장시간 작동을 할 수는 없습니다. 뭐 당연한 이야기겠죠. 이런 불지옥 행성에서 작동할 수 있는 튼튼한 기기라도 몇 시간 못 버티는 게 보통입니다.

  그러나 미국의 국립 과학 재단 기금의 지원을 받은 오자크 집적 회로(Ozark Integrated Circuits)는 놀랍게도 섭씨 350도의 고온을 견딜 수 있는 반도체 칩을 개발했습니다. 이런 고온 전자 회로의 개발은 미국의 기초과학력을 보여주는 사례로써 앞으로 금성 탐사는 물론 고온 고압의 극한 환경이 필요한 다른 분야에도 널리 응용될 가능성이 있습니다. 다만 문제는 그래도 금성 표면의 온도가 이것보다 높다는 것이죠.


 따라서 나사의 과학자들은 금성 로버에 냉각장치를 탑재하는 방법을 연구하고 있습니다. 이는 사실 곤란한 문제이기도 한데, 로버의 내부를 섭씨 300도로 주변보다 훨씬 낮게 유지하려면 많은 에너지가 필요할 뿐 아니라 부피와 무게도 커지기 때문이죠.
 따라서 화성에 보낸 로버들과 달리 금성 로버는 복잡한 탐사장치를 최소화시킨 단순한 구조가 될 가능성이 높습니다. 냉각이 필요한 전자 계통의 크기를 가능한 한 줄여야 하기 때문이죠. 물론 그러면서도 정보를 수집하고 지구에 자료를 전송해야 하므로 여러 가지 기술적 어려움이 있을 수밖에 없습니다.     
 동력 계통은 원자력 이외에는 처음부터 대안이 없으므로 (금성은 두꺼운 구름과 대기로 인해 태양전지를 사용할 수 없습니다. 물론 이런 온도와 압력에서 견디는 태양전지도 없지만 말이죠.) 오히려 결정이 쉬울 것 같지만, 이런 고온 환경에서 견디는 원자력 전지 역시 만들기 쉽지 않습니다.

 가능성 있는 대안은 플루토늄 - 238을 이용한 스털링 엔진입니다. 스털링(Stirling) 엔진은 온도 차를 이용해 동력을 발생시키는데, 방사성 붕괴로 섭씨 1,200도까지 가열된 플루토늄 연료와 주변의 상대적으로 낮은 기온을 이용한 방식입니다. 이를 이용해서 전력을 생산하기도 하지만, 고온 고압 환경에서 움직이는 전기 모터 역시 만들기 어렵기 때문에 직접 동력을 전달하는 방식이 사용될 수도 있습니다.


 즉 스털링 엔진으로 바퀴도 돌리고 냉각기의 모터도 같이 구동하는 것이죠. 일부 생산되는 전기만 전기 계통에 전달하는 방식으로 하면 이런 극한 환경에서 수일에서 수주 정도 버틸 수 있는 로버를 만들 수 있을지 모릅니다.
 하지만 이런 여러 가지 아이디어에도 불구하고 실제로 이런 환경에서 작동하는 로버를 만드는 일은 나사에게도 쉬운 일은 아니죠. 따라서 아직 금성 로버는 디자인 및 기초 연구의 단계를 벗어나지 못하고 있습니다. 현재 계획으로는 금성 표면에 풍선을 보내 표면에서 가까운 위치에서 저공비행을 하면서 관측하는 표면 관측 계획인 Venus In-Situ Explorer (VISE)이 먼저 시행될 것 같습니다.


 VISE는 2022년 발사 예정이며 로버와 달리 움직이는 엔진은 필요 없어서 구조가 훨씬 단순합니다. 다만 이런 극한 환경에서 버틸 수 있는 특수 풍선이 필요한데, 이미 이 부분에 대한 연구는 많이 진행되어 있어 성공 가능성이 높아 보입니다. 주변 압력이 크기 때문에 역설적으로 작은 풍선으로도 큰 부력을 만들 수 있죠. 여기에 탐사선을 매달면 정처없이 떠돌면서 표면의 지형을 촬영할 수 있습니다.

(금성 풍선 탐사선 VISE의 상상도. 출처: 나사)
 금성 로버는 VISE 이후 추진될 것으로 보이는데, 러시아 역시 2020년대에 자체적인 로버를 금성에 보낸다는 계획을 세우고 있어 과연 미국과 러시아 중 누가 먼저 로버를 보낼 수 있을지 미래가 궁금합니다.

 일단 공개된 내용을 보면 나사가 훨씬 앞서 있는 것 같지만, 아직 어느 나라도 금성 로버를 자신 있게 보낼 수 있을 만큼 완성된 기술을 가지고 있지 않습니다. 따라서 미국이 화성과 마찬가지로 금성에 첫 번째 로버를 보내는 나라가 될지는 아직 판단하기 이릅니다.
 아무튼 우리가 눈여겨볼 부분은 나사와 미 정부가 이런 기초 과학 연구에 많은 공을 들이고 있다는 점이 겠죠.  '우주 강국' 같은 화려한 수식어와 미사여구가 아니라 바로 이렇게 조용하지만 할 건 다하는 부분이 미국이 이 분야에서 좀처럼 선두 자리를 내주지 않는 비결 같습니다.
      
 참고 ​
 






댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다. 잘 쓰지도 않을 방법을 열심히 공부하는 것은 아무래도 효율

R 스튜디오 설치 및 업데이트

 R을 설치한 후 기본으로 제공되는 R 콘솔창에서 코드를 입력해 작업을 수행할 수도 있지만, 보통은 그렇게 하기 보다는 가장 널리 사용되는 R 개발환경인 R 스튜디오가 널리 사용됩니다. 오픈 소스 무료 버전의 R 스튜디오는 누구나 설치가 가능하며 편리한 작업 환경을 제공하기 때문에 R을 위한 IDE에서 가장 널리 사용되어 있습니다. 아래 링크에서 다운로드 받습니다.    https://www.rstudio.com/  다운로드 R 이나 혹은 Powerful IDE for R로 들어가 일반 사용자 버전을 받습니다. 오픈 소스 버전과 상업용 버전, 그리고 데스크탑 버전과 서버 버전이 있는데, 일반적으로는 오픈 소스 버전에 데스크탑 버전을 다운로드 받습니다. 상업 버전의 경우 데스크탑 버전의 경우 년간 995달러, 서버 버전은 9995달러를 받고 여러 가지 기술 지원 및 자문을 해주는 기능이 있습니다.   데스크탑 버전을 설치하는 과정은 매우 쉽기 때문에 별도의 설명이 필요하지 않을 것 같습니다. 인스톨은 윈도우, 맥, 리눅스 (우분투/페도라)에 따라 설치 파일이 나뉘지만 설치가 어렵지는 않을 것입니다. 한 가지 주의할 점이라면 R은 사전에 반드시 따로 설치해야 한다는 점입니다. R 스튜디오만 단독 설치하면 아무것도 할 수 없습니다. 뭐 당연한 이야기죠.   설치된 R 스튜디오는 자동으로 업데이틀 체크하지 않습니다. 따라서 업데이트를 위해서는 R 스튜디오에서 Help 로 들어가 업데이트를 확인해야 합니다.     만약 업데이트 할 내용이 없다면 최신 버전이라고 알려줄 것이고 업데이트가 있다면 업데이트를 진행할 수 있도록 도와주게 됩니다. R의 업데이트와 R 스튜디오의 업데이트는 모두 개별적이며 앞서 설명했듯이 R 업데이트는 사실 기존 버전과 병행해서 새로운 버전을 새롭게 설치하는 것입니다. R 스튜디오는 실제로 업데이트가 이뤄지기 때문에 구버전을 지워줄 필요는

R 패키지 설치 및 업데이트 오류 (1)

 R 패키지를 설치하거나 업데이트 하다보면 여러 가지 문제가 생기는 경우들이 있습니다. 이 경우 아예 R을 재설치하는 것도 방법이지만, 어떤 경우에는 이렇게해도 해결이 안되고 계속해서 사용자는 괴롭히는 경우도 있습니다. 이런 경우 중 하나를 소개합니다.  새로운 패키지를 설치, 혹은 업데이트 하는 과정에서 같이 설치하는 패키지 중 하나가 설치가 되지 않는다는 메세지가 계속 나왔는데, 사실은 백신 프로그램 때문이었던 경우입니다.   dplyr 패키지를 업데이트 하려고 했는데, 제대로 되지 않아 다시 설치를 진행했습니다. 그런데 일부 패키지가 제대로 설치되지 않는다는 메세지가 나왔습니다.  > install.packages("dplyr") Error in install.packages : Updating loaded packages > install.packages("dplyr") Installing package into ‘C:/Users/jjy05_000/Documents/R/win-library/3.4’ (as ‘lib’ is unspecified) also installing the dependencies ‘bindr’, ‘bindrcpp’, ‘Rcpp’, ‘rlang’, ‘plogr’ trying URL ' https://cran.rstudio.com/bin/windows/contrib/3.4/bindr_0.1.1.zip ' Content type 'application/zip' length 15285 bytes (14 KB) downloaded 14 KB trying URL ' https://cran.rstudio.com/bin/windows/contrib/3.4/bindrcpp_0.2.2.zip ' Content type 'application/zip' length 620344 b