기본 콘텐츠로 건너뛰기

이상치의 처리 (4)


 이제 앞서 예제로 쓴 다이아몬드 데이터에서 carat의 이상치를 위에서 열거한 방법으로 찾아보겠습니다. 데이터 해석을 간단하게 하기 위해 일단 다이아몬드 캐럿과 가격과의 관계를 알아보되 일부 표본만 추출해서 진행해 보겠습니다. 표본을 50개 정도 추출해서 이상치에 해당하는 데이터를 알아보겠습니다. 그런데 X와 Y, 혹은 독립 변수와 종속 변수 (원인과 결과) 중 어느 것이 이상치에 해당할까요. 


 정답은 둘 다 가능합니다. 예를 들어 비만과 혈압의 관계를 알기 위해 BMI와 수축기/이완기 혈압의 관계를 알아 볼 때 BMI 150이나 수축기 혈압 300mmHg 모두 있을 수 없는 값이므로 이상치에 속합니다. 캐럿 역시 100캐럿 다이아몬드나 100만 달러 다이아몬드가 있을 수 있는 값이긴 하나 극히 예외적인 경우에 속하므로 이를 이상치로 판단해도 무방할 것입니다. 일단 한번 데이터를 보겠습니다. 


set.seed(3311)
diamonds1<-sample 50="" diamonds="" nrow="" span="">
D1<-diamonds diamonds1="" span="">
D1

> D1
# A tibble: 50 x 10
   carat cut       color clarity depth table price     x     y     z
             
 1 0.600 Ideal     F     VS1      62.9  57.0  2142  5.35  5.31  3.35
 2 0.550 Very Good E     SI1      64.2  55.0  1417  5.18  5.20  3.33
 3 1.01  Ideal     D     SI2      62.5  57.0  5206  6.39  6.35  3.98
 4 0.330 Ideal     G     IF       60.9  57.0   946  4.45  4.48  2.72
 5 0.910 Very Good E     SI2      58.6  63.0  2963  6.38  6.32  3.72
 6 0.910 Good      G     VVS2     64.1  58.0  4543  6.06  6.10  3.90
 7 1.50  Good      F     VS2      63.6  55.0 13853  7.27  7.22  4.61
 8 0.740 Ideal     D     VS2      61.8  56.0  3858  5.79  5.82  3.59
 9 1.51  Premium   H     SI2      60.4  59.0  7864  7.30  7.27  4.40
10 0.450 Good      E     VS1      61.7  63.0  1241  4.88  4.91  3.02
# ... with 40 more rows


 이 코드를 통해 제대로 추출이 되었는지 확인한 후 연관성을 확인하기 위해 기본 플롯을 그립니다. 

plot(D1$carat, D1$price)  




 이 표에서는 가격과 캐럿 사이의 상관 관계가 확인됩니다. 당연한 이야기지만, 캐럿이 증가하면 다이아몬드 가격이 증가하는 것으로 보입니다. 그리고 대부분의 다이아몬드는 1.5 캐럿 이하 10000달러 이하라는 것도 알 수 있습니다. 이제 Z 값과 수정된 Z값을 알아보겠습니다. 이상치 판정 기준은 절대값 3으로 하겠습니다. 다만 그 전에 자료 분포를 보기 위해 박스 플롯을 그려 보겠습니다. 


par(mfrow=c(1,2))

boxplot(D1$carat,col="yellow")
text(0.7,median(D1$carat,na.rm=T),"median")
text(0.7,quantile(D1$carat,na.rm=T)[2],"Q1")
text(0.7,quantile(D1$carat,na.rm=T)[4],"Q3")
text(0.7,fivenum(D1$carat,na.rm=T)[2]-1.5*IQR(diamonds$carat,na.rm=T),"(1)Q1-1.5*IQR")
text(0.7,fivenum(D1$carat,na.rm=T)[4]+1.5*IQR(diamonds$carat,na.rm=T),"(2)Q3+1.5*IQR")

boxplot(D1$price,col="yellow")
text(0.7,median(D1$price,na.rm=T),"median")
text(0.7,quantile(D1$price,na.rm=T)[2],"Q1")
text(0.7,quantile(D1$price,na.rm=T)[4],"Q3")
text(0.7,fivenum(D1$price,na.rm=T)[2]-1.5*IQR(diamonds$price,na.rm=T),"(1)Q1-1.5*IQR")
text(0.7,fivenum(D1$price,na.rm=T)[4]+1.5*IQR(diamonds$price,na.rm=T),"(2)Q3+1.5*IQR")




 아무래도 캐럿보다는 가격쪽에 더 많은 이상치가 있어 보입니다. 이제 Z값과 수정된 Z값으로 이상치를 판별해 보겠습니다. 


require(outliers)

Z<-scores carat="" span="" type="z">
which(Z %in% Z[Z>3|Z< -3])

Zm<-scores carat="" span="" type="mad">
which(Zm %in% Zm[Zm>3|Zm< -3])


> Z<-scores carat="" span="" type="z">
> which(Z %in% Z[Z>3|Z< -3])
[1] 21
> Zm<-scores carat="" span="" type="mad">
> which(Zm %in% Zm[Zm>3|Zm< -3])
[1] 21


 두 가지 방법 모두 21번째 관측치가 이상치라고 하네요. 어떤 값인지 살펴보겠습니다. 


> D1[21,]
# A tibble: 1 x 10
  carat cut       color clarity depth table price     x     y     z
           
1  2.48 Very Good F     SI2      63.4  56.0 18692  8.64  8.55  5.45


 2.48 캐럿 다이아몬드로 컷팅도 좋고 가격도 18692달러나 됩니다. 당연히 비쌀만 하겠죠. 따라서 데이터 자체가 잘못된 것은 아닙니다. 앞서 포스팅에서 빌게이츠처럼 자료에는 문제가 없지만, 이 사람을 포함해서 소수의 사람에서 평균 소득을 구하는 일은 상당히 편향된 자료가 될 가능성이 큽니다. 그러면 이 수치를 제외시켜야 할까요. 판단을 위해 가격에서도 이상치를 구해보겠습니다. 


> Z<-scores price="" span="" type="z">
> which(Z %in% Z[Z>3|Z< -3])
[1] 21
> Zm<-scores price="" span="" type="mad">
> which(Zm %in% Zm[Zm>3|Zm< -3])
[1]  7 14 18 21 24

 수정된 Z 값에서 예상보다 많은 이상치가 나왔습니다. 어떤 값인지 확인해 보겠습니다. 


> D2<-subset zm="">3|Zm< -3)
> D2
# A tibble: 5 x 10
  carat cut       color clarity depth table price     x     y     z
           
1  1.50 Good      F     VS2      63.6  55.0 13853  7.27  7.22  4.61
2  1.28 Very Good G     VVS1     60.3  59.0 11214  6.99  7.03  4.23
3  2.00 Premium   H     SI2      60.7  60.0 15312  8.07  8.11  4.91
4  2.48 Very Good F     SI2      63.4  56.0 18692  8.64  8.55  5.45
5  2.05 Premium   G     SI1      61.6  59.0 15291  8.20  8.16  5.04


 이제보니 1.5 캐럿 이상인 다이아몬드와 1만 달러 이상인 다이아몬드가 이상치로 잡혔습니다. 이는 수정된 Z 값이 평균보다 훨씬 낮은 중앙값을 이용하기 때문에 생기는 현상입니다. 그런데 이상치가 전체의 10%나 되서 과연 다 제거해야 하는지 의문이 생길 수 있습니다. 이를 모두 제거할 경우 사실상 데이터가 달라지는 것이나 마찬가지입니다. 판단을 위해 IQR을 이용한 이상치도 같이 구해 봅니다. 


removeOutliers = function(x) { 
    qnt = quantile(x, probs=c(.25, .75))
    iqt = 1.5 * IQR(x)
    y = x 
    y[x < (qnt[1] - iqt)] = NA
    y[x > (qnt[2] + iqt)] = NA
  return(y)
  
}

D1$carat2<-removeoutliers carat="" span="">
sum(is.na(D1$carat2))
D3<-d1 carat2="" is.na="" span="">
D3

D1$price2<-removeoutliers price="" span="">
sum(is.na(D1$price2))
D3<-d1 is.na="" price2="" span="">
D3

 여기서 결측치가 있는 값을 구하기 위해서 subset이 아니라 is.na 명령어를 사용했다는 점에 주목해야 합니다. 이는 유용한 팁 가운데 하나입니다. 아무튼 결과를 보겠습니다. 


> D1$carat2<-removeoutliers carat="" span="">
> sum(is.na(D1$carat2))
[1] 1
> D3<-d1 carat2="" is.na="" span="">
> D3
# A tibble: 1 x 11
  carat cut       color clarity depth table price     x     y     z carat2
             
1  2.48 Very Good F     SI2      63.4  56.0 18692  8.64  8.55  5.45     NA
> D1$price2<-removeoutliers price="" span="">
> sum(is.na(D1$price2))
[1] 4
> D3<-d1 is.na="" price2="" span="">
> D3
# A tibble: 4 x 12
  carat cut       color clarity depth table price     x     y     z carat2 price2
               
1  1.50 Good      F     VS2      63.6  55.0 13853  7.27  7.22  4.61   1.50     NA
2  2.00 Premium   H     SI2      60.7  60.0 15312  8.07  8.11  4.91   2.00     NA
3  2.48 Very Good F     SI2      63.4  56.0 18692  8.64  8.55  5.45  NA        NA
4  2.05 Premium   G     SI1      61.6  59.0 15291  8.20  8.16  5.04   2.05     NA




 어떻게 보면 비슷한 결과입니다. 전체적으로 봤을 때 21번 관측치, 즉 2.48캐럿 다이아몬드는 전체 데이터와 거리가 있는 이상치로 보입니다. 과연 제거가 필요할까요. 이를 알기 위해서 분석이 필요합니다. 

댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다. 잘 쓰지도 않을 방법을 열심히 공부하는 것은 아무래도 효율

150년 만에 다시 울린 희귀 곤충의 울음 소리

  ( The katydid Prophalangopsis obscura has been lost since it was first collected, with new evidence suggesting cold areas of Northern India and Tibet may be the species' habitat. Credit: Charlie Woodrow, licensed under CC BY 4.0 ) ( The Museum's specimen of P. obscura is the only confirmed member of the species in existence. Image . Credit: The Trustees of the Natural History Museum, London )  과학자들이 1869년 처음 보고된 후 지금까지 소식이 끊긴 오래 전 희귀 곤충의 울음 소리를 재현하는데 성공했습니다. 프로팔랑곱시스 옵스큐라 ( Prophalangopsis obscura)는 이상한 이름만큼이나 이상한 곤충으로 매우 희귀한 메뚜기목 곤충입니다. 친척인 여치나 메뚜기와는 오래전 갈라진 독자 그룹으로 매우 큰 날개를 지니고 있으며 인도와 티벳의 고산 지대에 사는 것으로 보입니다.   유일한 표본은 수컷 성체로 2005년에 암컷으로 생각되는 2마리가 추가로 발견되긴 했으나 정확히 같은 종인지는 다소 미지수인 상태입니다. 현재까지 확실한 표본은 수컷 성체 한 마리가 전부인 미스터리 곤충인 셈입니다.   하지만 과학자들은 그 형태를 볼 때 이들 역시 울음 소리를 통해 짝짓기에서 암컷을 유인했을 것으로 보고 있습니다. 그런데 높은 고산 지대에서 먼 거리를 이동하는 곤충이기 때문에 낮은 피치의 울음 소리를 냈을 것으로 보입니다. 문제는 이런 소리는 암컷 만이 아니라 박쥐도 잘 듣는다는 것입니다. 사실 이들은 중생대 쥐라기 부터 존재했던 그룹으로 당시에는 박쥐가 없어 이런 방식이 잘 통했을 것입니다. 하지만 신생대에 박쥐가 등장하면서 플로팔랑곱

9000년 전 소녀의 모습을 복원하다.

( The final reconstruction. Credit: Oscar Nilsson )  그리스 아테나 대학과 스웨덴 연구자들이 1993년 발견된 선사 시대 소녀의 모습을 마치 살아있는 것처럼 복원하는데 성공했습니다. 이 유골은 그리스의 테살리아 지역의 테오페트라 동굴 ( Theopetra Cave )에서 발견된 것으로 연대는 9000년 전으로 추정됩니다. 유골의 주인공은 15-18세 사이의 소녀로 정확한 사인은 알 수 없으나 괴혈병, 빈혈, 관절 질환을 앓고 있었던 것으로 확인되었습니다.   이 소녀가 살았던 시기는 유럽 지역에서 수렵 채집인이 초기 농경으로 이전하는 시기였습니다. 다른 시기와 마찬가지로 이 시기의 사람들도 젊은 시절에 다양한 질환에 시달렸을 것이며 평균 수명 역시 매우 짧았을 것입니다. 비록 젊은 나이에 죽기는 했지만, 당시에는 이런 경우가 드물지 않았을 것이라는 이야기죠.   아무튼 문명의 새벽에 해당하는 시점에 살았기 때문에 이 소녀는 Dawn (그리스어로는  Avgi)라고 이름지어졌다고 합니다. 연구팀은 유골에 대한 상세한 스캔과 3D 프린팅 기술을 적용해서 살아있을 당시의 모습을 매우 현실적으로 복원했습니다. 그리고 그 결과 나타난 모습은.... 당시의 거친 환경을 보여주는 듯 합니다. 긴 턱은 당시를 살았던 사람이 대부분 그랬듯이 질긴 먹이를 오래 씹기 위한 것으로 보입니다.   강하고 억센 10대 소녀(?)의 모습은 당시 살아남기 위해서는 강해야 했다는 점을 말해주는 듯 합니다. 이렇게 억세보이는 주인공이라도 당시에는 전염병이나 혹은 기아에서 자유롭지는 못했기 때문에 결국 평균 수명은 길지 못했겠죠. 외모 만으로 평가해서는 안되겠지만, 당시의 거친 시대상을 보여주는 듯 해 흥미롭습니다.   참고  https://phys.org/news/2018-01-teenage-girl-years-reconstructed.html