기본 콘텐츠로 건너뛰기

우주 이야기 474 - 은하계의 중심을 향하는 케플러 우주 망원경



(As an exoplanet passes in front of a more distant star, its gravity causes the trajectory of the starlight to bend, and in some cases results in a brief brightening of the background star as seen by a telescope. The artistic concept illustrates this effect. This phenomenon of gravitational microlensing enables scientists to search for exoplanets that are too distant and dark to detect any other way.
Credits: NASA Ames/JPL-Caltech/T. Pyle)


 케플러 우주 망원경이 응급모드(Emergency mode)로 들었다가 다시 복구되었습니다. 사실 케플러가 이상을 일으킨 것은 새로운 임무를 수행하기 직전이었습니다. 이번 사태로 말미암아 K2 임무의 9번째 캠페인인 마이크로렌징 관측 임무 ( K2 mission's microlensing observing campaign, called Campaign 9)가 무산될 뻔 했으나 이제 다시 본 궤도에 오르게 되었습니다. 


 마이크로렌징은 중력 렌즈를 이용한 관측 기술입니다. 중력렌즈 효과는 아인슈타인의 상대성 이론으로 예언된 효과로 중력에 의한 공간의 휘어짐이 빛을 휘게 만들어서 마치 렌즈 같은 현상을 일으키는 것입니다. 이를 통해 과학자들은 멀리 떨어진 은하나 퀘이사를 더 확대해서 볼 수 있습니다. 


 중력렌즈는 처음에는 은하단이나 은하처럼 큰 질량을 가진 천체에서 주로 발견되었으나 현재는 관측기술의 발전으로 인해 아주 작은 천체의 중력렌즈 효과를 발견할 수 있게 되었습니다. 이를 마이크로 중력렌즈 혹은 마이크로렌징(microlensing) 기술이라고 부릅니다. 마이크로 중력렌즈를 통해서 검증할 수 있는 천체의 크기는 행성 수준까지 내려갈 수 있습니다. 


 이번 임무에서 관측하려는 것은 바로 떠돌이 행성들입니다. 우주에는 항성 주변을 공전하지 않는 떠돌이 행성들이 존재하는데, 보통 매우 어둡기 때문에 이를 관측하기가 어렵습니다. 따라서 얼마나 흔하게 존재하는지 알 방법이 없는 상태입니다. 동시에 마이크로렌징효과는 목성이나 해왕성처럼 모성에서 먼 행성을 관측할 수 있는 방법이기도 합니다. 


 케플러 우주 망원경과 지상의 망원경들은 서로 협력해서 별이 많은 은하계 중심부를 향해 7월 1일까지 관측을 시행할 것입니다. 이를 통해서 많은 수의 마이크로렌징 효과를 관측할 수 있기를 기대하고 있습니다. 다행히 케플러가 복구되어 늦지 않게 임무를 시작할 수 있게 되었습니다. 


(In a global experiment in exoplanet observation, the K2 mission and Earth-based observatories on six continents will survey millions of stars toward the center of our Milky Way galaxy. Using a technique called gravitational microlensing, scientists will hunt for exoplanets that orbit far from their host star, such as Jupiter is to our sun, and for free-floating exoplanets that wander between the stars. The method allow exoplanets to be found that are up to 10 times more distant than those found by the original Kepler mission, which used the transit technique. The artistic concept illustrates the relative locations of the search areas for NASA's K2 and Kepler missions.
Credits: NASA Ames/W. Stenzel and JPL-Caltech/R. Hurt)




(동영상)



 이번 임무에서 얼마나 많은 떠돌이 행성이나 혹은 모성에서 멀리 떨어진 행성들이 발견될지는 장담하기 어렵습니다. 하지만 많은 수의 마이크로렌징 효과를 발견하지 못하더라도 앞으로의 연구에 중요한 데이터를 확보할 수 있을 것으로 기대합니다. 물론 이번 관측으로 놀라운 사실이 밝혀질지도 모를 일이죠.


 이전의 외계 행성 탐사와 마찬가지로 케플러는 동시에 여러 별을 관측해 마이크로렌징이 의심되는 천체를 고를 것이고 지상의 망원경이 이를 다시 검증하는 방식으로 연구가 진행될 것으로 보입니다. 케플러와 지상 망원경이 협력으로 좋은 성과를 거두기를 기대해 보겠습니다. 


 참고 




댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...