기본 콘텐츠로 건너뛰기

생명에 언어에 새로운 알파벳을 더하다 - 인공 염기쌍을 지닌 박테리아 탄생



 DNA  는 생명의 언어라고 할 수 있습니다. 수정란의 핵안에 들어 있는 DNA 에는 앞으로 이 세포가 닭이나 토끼, 사자 혹은 인간이 되는 정보가 담겨져 있습니다. 그 안에는 수만개의 유전자가 존재하지만 사실 그 기초가 되는 알파벳은 매우 단순합니다.  


 한쌍씩 짝을 이루는 4 개의 염기인 A-T, G-C 가 그것으로 아데닌 (Adenine), 구아닌 (Guanine), 사이토신 (Cytosine), 티민 (Thymine) 라는 4 가지 종류로 구성되어 있습니다. DNA 에 기록된 정보는 RNA 를 거쳐 각각의 단백질에 들어갈 아미노산의 종류와 순서를 정해주는데 이 단백질을 통해서 고유의 생명활동이 일어나게 되죠.  





(익숙한 DNA 의 구조.  


 그런데 여기서 한가지 의문을 지녀볼 수 있습니다. 왜 단지 4 개의 염기만이 존재할까요. 더 많은 종류의 염기는 존재할 수 없는 것일까요 ? 실제로 과학자들은 지구상에 있는 생명체에는 쓰이지 않기는 하지만 실험실에서 ATGC 이외의 다른 형태의 염기도 존재할 수 있다는 것을 이전부터 알고 있었습니다. 왜 하필이면 이 4 개만이 (물론 RNA 까지 포함하면 우라실 (Uracil) 도 추가) 선택되었는지도 흥미로운 주제이지만 과연 인공적인 염기를 가진 생명체가 존재할 수는 없는지 역시 흥미로운 주제라고 할 수 있습니다.  


 스크립 연구소 (The Scripps Research Institute (TSRI)) 의 플로이 롬스버그 (TSRI Associate Professor Floyd E. Romesberg) 와 그의 동료들은 단순한 대장균에 A-T, G-C 외에 3 번째의 염기쌍을 지닌 유전자를 삽입하는데 성공해 이를 네이처에 발표했습니다. 그의 연구팀은 1990 년대 후반부터 새로운 염기쌍을 지닌 유전자가 실제로 단백질을 코딩할 수 있다는 것을 발견하고 연구를 지속해 왔습니다.  


 그런데 사실 말이 쉽지 실제로 A-T, G-C 외에 새로운 인공 염기쌍을 DNA 에 자연스럽게 결합하는 일은 매우 어려운 과제였다고 합니다. DNA 는 두가닥의 고분자가 지퍼처럼 서로 연결되어 있는데 이것이 자연스럽게 두가닥으로 풀렸다가 다시 결합을 해야 합니다. 문제는 인공 염기쌍들이 잘 달라붙지 않거나 다른 염기에 달라 붙는 경우로 이렇게 되면 사실상 기능을 하지 못하는 DNA 가 될 수 밖에 없습니다. 연구팀이 이 문제를 극복하고 실제 살아있는 박테리아에 이를 주입해 기능을 하게 만든 것은 인공 DNA 연구에서 한획을 그을 수 있는 업적이라고 할 수 있습니다.  




(새롭게 추가된 염기쌍.  Expanding the genetic alphabet. Credit: Synthorx )  


 그런데 이렇게 새로운 염기쌍을 넣으면 어떤 장점이 있는 것일까요 ? 연구팀에 의하면 이렇게 3 쌍으로 만들게 되면 현재의 64 코돈 (Codon - 3 개의 염기 정보를 바탕으로 하나의 아미노산을 지정하는 단위) 에 비해 더 많은 216 코돈 (Codon) 이 탄생하게 되어 무려 172 개나 되는 아미노산 (자연적으로는 약 20 개 정도) 을 가진 단백질을 만들 수 있다고 합니다. 이는 새로운 신약이나 신물질 개발, 나노 테크놀로지등에 응용할 수 있는 가능성이 매우 무궁무진 하다는 것이 연구팀의 생각입니다.


 연구팀은 짧은 DNA 의 가닥인 플라스미드 (Plasmid) 에 새로운 염기쌍을 삽입했습니다. 그것은 d5SICS 와 dNaM 라는 자연계에는 존재하지 않는 염기쌍 (unnatural base pairs (UBPs)) 입니다. 이 분자들이 선택된 이유는 PCR 을 통해 쉽게 증폭이 가능하며 DNA 에 삽입되어 정상적으로 전사 (transcription : DNA 를 바탕으로 RNA 를 만드는 과정) 가 일어나기 때문입니다.  


 그런데 이렇게 새로운 염기쌍을 가진 DNA 를 가진 생명체가 위험하지는 않을까요 ? 여기에 대해서 연구팀은 통제 되지 않는 위험한 박테리아가 실험실 밖으로 퍼지는 것을 막기 위한 안전장치를 해놓았습니다.  


 새로운 DNA 염기쌍을 지닌 대장균이 증식하기 위해서는 본래는 존재하지 않는 d5SICS 와 dNaM 이 필요합니다. 자연계의 생물체 가운데 이 물질을 합성하는 능력이 있는 생물체가 없기 때문에 자연적인 염기와는 다르게 이 물질은 외부에서 계속 공급해주어야 합니다. 그리고 이 물질이 세포 내부로 들어가게 돕는 물질도 필요합니다. 


 다시 말해 공급이 없으면 새로운 염기쌍을 지닌 유전자는 기능을 하지 못하게 됩니다. 플라스미드가 삽입된 대장균은 본래 정상적인 DNA 도 가지고 있어서 살아가는데는 지장이 없겠지만 필요 없어진 추가 유전자들은 시간이 지나면서 버리게 되어 결국 정상 대장균으로 돌아오게 됩니다. (아래 그림 참조) 



(How to expand the genetic alphabet. / 클릭하면 원본 Credit: Synthorx )    


 사실 개인적으로 생명의 역사의 초기에서 ATGC 라는 분자 4 개가 유전 정보를 전달하기 위해 선택된 것은 우연이 아닐 가능성이 높다고 생각합니다. 이것이 가장 효율적인 방식이었기 때문에 자연 선택에 의해 선택되었을 가능성이 높겠죠. 현재 다른 방식을 지닌 생명체가 지구상에 존재하지 않는다는 것이 그 증거라고 할 수 있습니다. ATGC 만으로도 필요한 단백질을 합성해서 생존에 문제가 없다면 그 이상 가지는 것은 쓸데없는 낭비이자 생존에 불리한 요소일지 모릅니다. 


 하지만 이것과는 별개로 특수한 신물질 합성과 생산을 위해 인공적인 염기쌍을 추가한다는 아이디어는 꽤 그럴듯해 보입니다. 향후 안전성 이슈와 비용등의 문제를 해결한다면 신물질 개발, 나노 기술, 신약 개발에 도움이 될 가능성도 있어 보입니다. 개인적으로 한가지 더 흥미가 가는 부분은 왜 ATGC 가 최후의 승자가 되었는지에 대한 새로운 정보를 제공할 가능성입니다. 과연 어떻게 응용이 가능할지 궁금하네요.  


 참고  



Journal Reference:
  1. Denis A. Malyshev, Kirandeep Dhami, Thomas Lavergne, Tingjian Chen, Nan Dai, Jeremy M. Foster, Ivan R. Correa, Floyd E. Romesberg. A semi-synthetic organism with an expanded genetic alphabetNature, 2014; DOI:10.1038/nature13314




댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...