(First image of the black hole at the center of the Milky Way. This is the first image of Sagittarius A* (or Sgr A* for short), the supermassive black hole at the centre of our galaxy. It’s the first direct visual evidence of the presence of this black hole. It was captured by the Event Horizon Telescope (EHT), an array which linked together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The telescope is named after the “event horizon”, the boundary of the black hole beyond which no light can escape. Although we cannot see the event horizon itself, because it cannot emit light, glowing gas orbiting around the black hole reveals a telltale signature: a dark central region (called a “shadow”) surrounded by a bright ring-like structure. The new view captures light bent by the powerful gravity of the black hole, which is four million times more massive than our Sun. The image of the Sgr A* black hole is an average of the different images the EHT Collaboration has extracted from its 2017 observations. Credit: EHT Collaboration)
(Making of the image of the black hole at the center of the Milky Way. Credit: EHT Collaboration)
(Sgr A*, pronounced sadge-ay-star, is a complex radio source at the center of the Milky Way Galaxy, and is home to a supermassive black hole, or SMBH. More than 300 researchers from 80 institutions around the world worked together to image SgrA* using the Event Horizon Telescope (EHT), a global telescope made up of multiple radio arrays working together. Visually, SgrA* looks a lot like M87*, the first black hole ever imaged. But, the new results have shown that they're as different as can be. Credit: NRAO/AUI/NSF, EHT Collaboration)
3년전 M87 은하 중심 블랙홀에서 처음으로 블랙홀의 이미지를 확보한 EHT (Event Horizon Telescope
)가 우리 은하 중심 거대 질량 블랙홀의 이미지를 처음으로 얻는 데 성공했습니다. EHT는 전 세계에 흩어진 8개의 대형 전파망원경 ( ALMA, APEX, the IRAM 30-meter telescope, the James Clerk Maxwell Telescope, the Large Millimeter Telescope Alfonso Serrano, the Submillimeter Array, the Submillimeter Telescope, and the South Pole Telescope)을 연결해 12000km 공간에 흩어진 전파 망원경을 하나의 망원경처럼 연결하는 것으로 very-long-baseline interferometry (VLBI) 방식을 사용합니다.
이전 포스트: https://blog.naver.com/jjy0501/221510639132
이번 관측에는 전 세계 80개 연구 기관과 300명이 넘는 연구자가 참여해 3년에 걸쳐 관측한 결과를 모아 분석했습니다. 27000광년 떨어진 궁수자리 A*는 5500만 광년 떨어진 M87보다 훨씬 가깝지만, 대신 먼지와 가스가 많아 직접 관측은 훨씬 어려운 블랙홀입니다. 더 큰 문제는 궁수자리 A*의 질량이 M87 중심 블랙홀보다 1000배 정도 작아서 관측이 매우 힘들다는 것입니다. 이 경우 자전 속도가 매우 빨라 주변의 플라스마가 M87처럼 몇 일이 아닌 몇 분 만에 공전하게 됩니다. 따라서 EHT의 알고리즘을 완전히 새로 만드는 수준의 노력이 필요했습니다. 참고로 EHT의 분해능은 지구에서 달 표면의 도넛을 식별할 수 있는 수준입니다.
(What it Takes to Image a Black Hole)
(Clustering and averaging the images of Sagittarius A* and M87*)
(Size comparison of the two EHT black holes)
이렇게 해서 만들어진 궁수자리 A*의 이미지는 앞서 M87과 마찬가지로 사실 블랙홀 자체의 이미지는 아닙니다. 그보다는 블랙홀 주변의 강착 원반에서 나오는 강력한 빛과 그 빛이 중력에 의해 휘어지는 블랙홀의 그림자 (Black hole's shadow)를 관측하는 것입니다. 블랙홀의 사상의 지평면, 혹은 슈바르츠실트 반경은 이미지에서 보이는 밝은 부분이 아니라 그 안쪽의 어두운 부분입니다.
이번 연구에서 주목받는 점은 M87 중심 블랙홀이나 궁수자리 A* 블랙홀의 모습이 크게 다르지 않다는 것입니다. 그리고 이는 아인슈타인의 상대성 이론에서 예측한 그대로입니다. 따라서 아직 관측하지 못한 다른 블랙홀들의 모습도 그렇게 다르지 않을 것으로 추정할 수 있습니다.
블랙홀 주변을 관측하는 거대 과학은 이제 시작 단계입니다. 현재 EHT는 새로 건설될 차세대 전파 망원경까지 포함해 성능을 높일 계획을 가지고 있습니다. 앞으로 EHT가 어떤 성과를 거둘 수 있을 주목됩니다.
참고
The Astrophysical Journal Letters: iopscience.iop.org/journal/2041-8205
https://phys.org/news/2022-05-astronomers-reveal-image-black-hole.html
댓글
댓글 쓰기