(The scientists performed 295 consecutive cycles in a 4 kW solar reactor during the SOLAR-JET project, yielding 700 standard liters of syngas. Credit: SolarPACES)
(Diagram of the chemical process for concentrated solar splitting of H2O / CO2 from Philipp Furler's presentation at the 23rd SolarPACES Annual Conference. Credit: Philipp Furler)
(Ultimately, industrial-scale solar fuels production systems would be run using megawatt-scale reactor-systems on solar towers with heliostats (mirrors) concentrating suns on the receiver, similar to, but running at much higher temperatures than current commercial solar tower plants. Credit: SolarPACES)
우리가 사용하는 화석 연료는 사실 광합성 결과물로 생긴 탄화수소를 이용하는 것입니다. 다만 지구 지각에 오래 저장되었던 탄화수소를 다시 꺼내 쓰면서 대기 오염 문제는 물론 대기 중 이산화탄소 농도가 다시 상승하면서 문제가 되고 있습니다. 따라서 과학자들은 식물처럼 태양 에너지를 이용해서 탄화수소 연료를 만드는 연구를 진행하고 있습니다.
이런 다양한 시도 가운데 하나가 바로 솔라젯 (SOLAR-JET) 프로젝트입니다. 유럽에서 진행하는 이 연구는 태양열에너지를 이용해서 물과 이산화탄소를 제트 연료로 사용할 수 있는 탄화수소 연료로 바꾸는 것입니다. 이론적으로는 충분히 가능하지만, 역시 문제는 경제성입니다. 솔라젯 프로젝트는 이미 연료를 시험 생산하는데는 성공했지만, 상업적인 대량 생산이 가능할만큼 효율성은 좋지 않았습니다.
쉘(Shell)과 스위스 취리히 연방공대의 연구팀은 3000개의 거울을 이용한 4kW급 반응기를 이용해 이전보다 더 높은 효율로 Syngas를 만들 수 있는 시스템을 개발했습니다. 이들은 섭씨 1500도로 물과 이산화탄소를 가열해 여기서 산소를 분리해 일산화탄소 (CO)와 수소를 만들었는데, 이는 솔라젯 연료 합성의 첫 단계입니다. 다음 단계는 피셔 트롭쉬 반응 (Fischer - Tropsch)을 이용해서 케로신(등유)와 비슷한 연료를 만드는 것입니다. 이렇게 생산한 케로신은 이미 존재하는 제조과정을 거쳐 제트 연료로 바꿀 수 있습니다.
하지만 사실 생성되는 일산화탄소와 산소를 완벽하게 분리하는 일은 만만치 않은 과제였습니다. 연구팀은 100%의 분리율을 지닌 새로운 기술을 개발했으며 태양에너지 - 연료 전환 효율도 5.25%까지 끌어올리는데 성공했습니다.
지금까지 연구팀은 295회의 사이클을 통해 연료로 합성할 수 있는 합성가스(syngas) 700리터를 합성했습니다. 하지만 실제 상업 생산으로 이어지기 위해선 아직 갈길이 먼 상태입니다. 첫 번째 문제는 물과 이산화탄소에서 산소를 분리하는 과정이 너무 높은 온도에서 일어난다는 것입니다. 섭씨 1,500도는 대개의 시스템에서 견디기 어려운 고온입니다. 현재 상업적으로 운용되는 태양열 발전소의 경우 섭씨 560도 정도에서 작동하기 때문에 가급적 반응 온도를 낮출 필요가 있습니다.
두 번째 문제는 낮은 효율입니다. 연구팀은 다음 연구에서 효율을 15%까지 끌어올리려고 하고 있으며 궁극적으로는 에너지 전환 효율을 태양열 발전소의 전기 생산 수준과 비슷한 30%까지 높이려는 목표를 가지고 있습니다. 그렇게 해야 태양열 에너지로 전기 대신 제트 연료를 생산하는 방식이 경쟁력과 정당성을 가질 수 있을 것입니다.
현재 급변하는 시장 환경을 고려하면 셀 같은 석유 회사들에게 솔라젯은 중요한 의미가 있습니다. 유럽을 중심으로 화석 연료 사용을 줄이거나 궁극적으로 퇴출시키려는 움직임이 활발해지고 있는데, 이는 당연히 석유 회사 입장에서는 큰 위협이 아닐 수 없습니다. 따라서 탄소 중립적이고 지구 온난화 문제를 일으키지 않는 합성 연료를 개발할 수 있다면 이 위기에서 벗어나는 기회가 될 수 있습니다. 경제적인 생산이 가능해지면 제트 연료 뿐 아니라 자동차, 선박 연료로 더 확장할 수 있기 때문입니다.
다만 전기차에 사용되는 배터리의 성능이 끊임없이 개선되고 관련 인프라가 빠르게 보급되는 상황 자체가 화석 연료 규제 움직임보다 더 큰 위협일지도 모릅니다. 사실 배터리 가격이 저렴해지고 충전 시간이 짧아질수록 전기 자동차의 여러 가지 장점 (상대적 저소음, 매연이 없음, 내연 기관 대비 단순한 구조)이 부각될 수밖에 없는데 과연 내연 기관이 몰락하지 않고 버틸 수 있을지 궁금합니다.
참고
Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiencyDaniel Marxer, Philipp Furler, Michael Takacs and Aldo SteinfeldEnergy & Environmental Science, 10 (5): 1142-1149, Cambridge: Royal Society of Chemistry, 2017.
Solar kerosene from H2O and CO2Philipp Furler, Daniel Marxer, Jonathan Scheffe, Hans Geerlings, Christoph Falter, Valentin Batteiger, Andreas Sizmann and Aldo SteinfeldAIP Conference Proceedings 1850, 100006 (2017); DOI: 10.1063/1.4984463
Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2Daniel Marxer, Philipp Furler, Jonathan Scheffe, Hans Geerlings, Christoph Falter, Valentin Batteiger, Andreas Sizmann and Aldo SteinfeldEnergy & Fuels, 29 (5): 3241-3250, Washington, DC: American Chemical Society, 2015.
Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cyclingPhilipp Furler and Aldo SteinfeldChemical engineering science, 137: 373-383, Amsterdam: Elsevier, 2015.
Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porositiesPhilipp Furler, Jonathan Scheffe, Daniel Marxer, Michal Gorbar, Alexander Bonk, Ulrich Vogt and Aldo SteinfeldPhysical Chemistry Chemical Physics, 16 (22): 10503-10511, Cambridge: Royal Society of Chemistry, 2014.
Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox SystemPhilipp Furler, Jonathan Scheffe, Michael Gorbar, Louis Moes, Ulrich Vogt and Aldo SteinfeldEnergy & Fuels, 26 (11): 7051-7059, Washington, DC: American Chemical Society, 2012.
Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high temperature solar reactorPhilipp Furler, Jonathan R. Scheffe and Aldo SteinfeldEnergy & Environmental Science, 5 (3): 6098-6103, Cambridge: Royal Society of Chemistry, 2012.
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric CeriaWilliam C. Chueh, Christoph Falter, Mandy Abbott, Danien Scipio, Philipp Furler, Sossina M. Haile and Aldo SteinfeldScience, 330 (6012): 1797-1801, Washington, D.C.: American Association for the Advancement of Science, 2010.
댓글
댓글 쓰기