기본 콘텐츠로 건너뛰기

인간을 화성으로 - 핵추진 로켓과 우주선 코페르니쿠스



 나사는 현재 개발 중인 차세대 로켓인 SLS와 오라이언(오리온) 우주선의 개발이 순조롭게 진행된다면 인류를 달 너머로 보낼 계획을 가지고 있습니다. 첫 단계는 소행성이 될 것이며, 그 다음 단계는 화성이 될 가능성이 높습니다. 다만 현재 예산 상태로는 본래 목표했던 달 기지는 어려워 보이고 사실 화성 유인 탐사도 예산이 허락할지 불투명한 상태입니다.

 하지만 나사는 자신들의 오랜 숙원 사업 가운데 하나였던 화성 유인 탐사를 (즉 화성에 미국인을 보내서 성조기를 화성 표면에 올리는 사업) 성공시키기 위해서 많은 노력을 진행 중에 있습니다. 수년전 나사는 DRA(Mars Design Reference Architecture) 5.0 연구를 발표하면서 매우 구체적인 화성 유인 탐사 계획을 밝혔는데, 그 핵심에는 열핵 추진 로켓(NTR: Nuclear Thermal Rocket)과 유인 화성 우주선 MTV(Mars Transfer Vehicle) 코페르니쿠스(Copernicus)가 있습니다. 





(유인 화성 탐사선의 상상도 Artist’s concept of a Bimodal Nuclear Thermal Rocket in Low Earth Orbit. Credit: NASA )   

 이 핵추진 우주선은 2020년 대 중반에 소행성, 2033년에는 화성 유인 탐사를 진행한다는 매우 구체적인 계획까지 가지고 있습니다. 물론 궁극적인 목적인 화성 유인 탐사 및 화성 기지 건설을 위해서는 우주선만 필요한 것이 아니므로 나사는 화성 착륙선 및 화성 탐사차, 화성 유인 기지 모듈 등도 같이 연구 중에 있습니다. 

 일단 여기서 이 계획의 핵심인 열핵 추진 장치(Nuclear Thermal Propulsion)부터 설명을 해야 할 것입니다. 미국은 이미 1950년대부터 다양한 원자력 추진 로켓을 개발해 왔습니다. 물론 냉전 시절 소련과의 군사적 경쟁을 염두에 둔 것이었지만, 우주 탐사라는 목적 역시 같이 염두에 둔 것이었습니다. 다만 사고 위험 및 방사능 누출의 가능성이 매우 컸기 때문에 결국 이 계획은 연구 단계에서 더 진행하지 못했습니다.  

 이전 포스트 참고 


 현재 나사가 생각하는 방식은 핵 - 전기 방식(Nuclear Electric Propulsion (NEC))이나 핵 펄스 방식이 아닌 열핵 추진 방식의 로켓입니다. NTP 방식은 쉽게 이야기해서 원자로 내부나 밖에서 핵분열 반응으로 나오는 열을 이용해서 연료를 가열해 분사하는 방식을 의미합니다. 예를 들어 액체 상태인 물이 기체가 되면 부피가 1700배 증가하게 됩니다. 여기서 나오는 뜨거운 기체를 이용해서 추진력을 발휘하는 방식입니다. 이 방식 역시 연료가 필요하지만 화학 로켓과 대비하면 상당히 적은 연료로 많은 추진력을 낼 수 있습니다. 

 NTP 로켓은 1 kg 의 우라늄 연료로 200kWt 의 에너지를 13년간 낼 수 있습니다. 물론 가열하는 액체 (이 경우에는 액체 수소)는 중간 중간 보충을 해줘야 하지만 연료의 수명은 매우 긴 편입니다. 위의 그림에서 보면 핵추진 엔진부와 거주 모듈 사이에는 액체 수소 연료 탱크가 있습니다. 이 연료 탱크는 드롭 탱크 방식으로 교체하거나 추가로 연결이 가능합니다. 



(NERVA 계획에서의 열핵 추진 로켓의 모식도 NASA design for a Nuclear Engine for Rocket Vehicle Application (NERVA). Credit: NASA )    


 사실 기술적인 세부 사항은 오래전 개발이 진척되어 있어 새롭게 개발하는 것 자체는 기술적 난이도가 높지는 않을 것으로 생각되고 있습니다. 문제는 역시 사고와 방사능 유출의 가능성이겠죠. NTP 엔진의 디자인은 액체 수소를 직접 반응로에 넣느냐 아니면 한번 더 단계를 거치느냐로 나눌 수 있습니다. 전자는 구조가 단순하고 출력이 높은 반면 방사능 물질의 유출 가능성이 높고, 후자는 방사능 유출 가능성은 낮은 대신 구조가 복잡하고 출력이 낮아집니다. 



(일명 전구 방식이라고 불리는 폐쇄 방식의 NTP 로켓 디자인. 액체 수소는 연료봉과 직접 접촉하는 대신 주변을 돌아 나간 후 노즐을 통해 배출된다. The closed-concept (aka. Lightbulb) gas core nuclear-thermal rocket engine. Credit: NASA ) 

 물론 이외에도 다양한 디자인이 제안되고 있으나 이 중 어느 것도 아직 우주에서 테스트 된 적은 없습니다. 이에 반해 이온 플라즈마 로켓은 추력이 낮긴 하지만 이미 우주에서 실제로 사용되고 있습니다. RTG 같은 원자력 전지를 이용해서 이온 플라즈마 로켓에 동력을 제공하는 방식은 구조도 단순하고 사고의 위험성도 적긴 하지만 추력이 너무 낮다는 문제점이 존재합니다. 

 코페르니쿠스 MTV에 최종적으로 어떤 설계가 적용될 지 아직은 결정된 바가 없지만 이를 어떤 방식으로 운용할지는 어느 정도 컨셉이 잡혀있습니다. 우선 여러 차례의 SLS 로켓 발사를 통해서 몇개의 부분으로 구성된 코페르니쿠스 MTV가 조립됩니다. 그리고 유인 버전에 앞서 탐사 및 기지 건설에 필요한 장비를 실은 무인 우주선이 화성을 향해 발사됩니다. 이후 인간이 탄 우주선이 화성으로 향하게 되는 것입니다. 그리고 물론 무사하게 귀환하게 됩니다. 



(화성 유인 탐사 컨셉. 출처 : NASA) 


 다만 이 계획은 핵추진 로켓에 대한 반대 여론을 무마시켜야 하는 것 이외에도 막대한 예산을 타내야 하는 어려움이 존재합니다. 아마도 이것이 기술적인 어려움보다 더 극복하기 쉽지 않은 일이 될 가능성이 높습니다. 

 나사는 꽤 실현 가능성이 있어 보이는 계획을 세심하게 준비했지만, 언제나 그렇듯이 예기치 않은 문제가 그들의 앞을 가로막을 수 있습니다. 특히 예산 문제가 그렇죠. 과연 나사가 핵추진 로켓을 쏘아올릴 수 있을지, 그리고 화성에 도달할 수 있을지 시간이 알려줄 것입니다. 

 참고 






댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...