기본 콘텐츠로 건너뛰기

태양계 이야기 915 - 소행성 충돌 궤도 변경 시스템 DART를 준비 중인 나사



 (The recently installed Roll-Out Solar Arrays (ROSA) and Didymos Reconnaissance and Asteroid Camera for Optical (DRACO) navigation are two critical technologies that will enable the DART spacecraft to navigate through space and effectively reach the Didymos asteroid system.

Credits: NASA/Johns Hopkins APL/Ed Whitman)




(The flexible and rollable “wings” are lighter and more compact than traditional solar arrays despite their size; in space, each array will slowly unfurl to reach 28 feet in length, about the size of a bus.

Credits: NASA/Johns Hopkins APL/Ed Whitman)




(Illustration of DART on course to impact Didymos B, viewed from behind the DART spacecraft, Credit: NASA/Johns Hopkins APL)



 앞서 소개한 나사와 유럽 우주국의 소행성 궤도 변경 프로젝트가 이제 본격 실행을 앞두고 최종 준비 작업에 들어가고 있습니다. 실제 소행성에 충돌해 궤도를 바꿀 우주선인 DART (Double Asteroid Redirection Test)는 나사 JPL에서 최종 조립 단계로 당초 예상보다 늦어지긴 했지만, 별다른 이변이 없다면 2021년 11월 24일 발사될 예정입니다.



 이전 포스트: https://blog.naver.com/jjy0501/220321722703


                https://blog.naver.com/jjy0501/221308060917



 DART가 소행성 65803 디디모스 (Didymos)의 위성인 디모포스 (Dimorphos)에 충돌하는 것은 2022년 10월로 10개월 이상 비행하는데 필요한 추력은 나사의 차세대 이온 로켓인 NASA Evolutionary Xenon Thruster–Commercial (NEXT-C)을 사용합니다. 이 엔진을 가동하는데 필요한 에너지는 22㎡ 면적의 롤러블 태양 전지인 Roll-Out Solar Arrays (ROSA)가 공급합니다. ROSA는 두루마리 휴지처럼 접히는 디자인으로 우주선에 탑재할 때는 매우 작은 크기지만, 우주에서는 매우 크게 펼쳐집니다. 



 DART 자체는 500kg 정도 무게인데, 사실 크기에 비해 탑재하는 과학장비는 많지 않습니다. 주된 목적은 충돌 자체이기 때문입니다. 디디모스는 지름 780m, 디모포스는 지름 160m로 무게가 상당하기 때문에 궤도 수정을 위해서는 어느 정도 질량이 필요합니다. 다만 정확한 위치에 충돌하기 위해 네비게이션 카메라인 20cm 구경의 DARCO (Didymos Reconnaissance and Asteroid Camera for Optical navigation)를 탑재하고 있으며 충돌 시 모습을 관측하기 위해 6U 큐브셋인 LICIACube (Light Italian CubeSat for Imaging of Asteroids)를 탑재합니다. LICIACube는 이탈리아 우주국이 개발합니다. 



 DART가 성공적으로 디모포스에 충돌하면 디모포스의 궤도는 미세하게 바뀌게 됩니다. 다만 디디모스의 위성이기 때문에 전체 공전 궤도에 미치는 영향은 미미한 수준으로 지구에는 위협적이지 않습니다. 충돌 시 속도는 6.6km/s이지만 디모포스의 속도는 0.4mm/s 정도만 바뀌게 될 것입니다. 우선 작은 궤도 변경을 통해 우리가 원하는 방향으로 소행성 궤도를 안전하게 수정할 수 있는지 알아보는 것이 DART의 목적입니다. 



 소행성 궤도 변경은 SF 영화나 소설에서는 자주 등장하는 일이지만, 인간이 실제로 시도하는 것은 처음입니다. 2022년, 우주 개발사에 한 획을 그을 임무가 성공을 거둘지 기대됩니다. 



 참고 



https://www.nasa.gov/feature/dart-gets-its-wings-spacecraft-integrated-with-innovative-solar-array-technology-and-camera


https://en.wikipedia.org/wiki/Double_Asteroid_Redirection_Test


https://en.wikipedia.org/wiki/65803_Didymos






댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다. 잘 쓰지도 않을 방법을 열심히 공부하는 것은 아무래도 효율

150년 만에 다시 울린 희귀 곤충의 울음 소리

  ( The katydid Prophalangopsis obscura has been lost since it was first collected, with new evidence suggesting cold areas of Northern India and Tibet may be the species' habitat. Credit: Charlie Woodrow, licensed under CC BY 4.0 ) ( The Museum's specimen of P. obscura is the only confirmed member of the species in existence. Image . Credit: The Trustees of the Natural History Museum, London )  과학자들이 1869년 처음 보고된 후 지금까지 소식이 끊긴 오래 전 희귀 곤충의 울음 소리를 재현하는데 성공했습니다. 프로팔랑곱시스 옵스큐라 ( Prophalangopsis obscura)는 이상한 이름만큼이나 이상한 곤충으로 매우 희귀한 메뚜기목 곤충입니다. 친척인 여치나 메뚜기와는 오래전 갈라진 독자 그룹으로 매우 큰 날개를 지니고 있으며 인도와 티벳의 고산 지대에 사는 것으로 보입니다.   유일한 표본은 수컷 성체로 2005년에 암컷으로 생각되는 2마리가 추가로 발견되긴 했으나 정확히 같은 종인지는 다소 미지수인 상태입니다. 현재까지 확실한 표본은 수컷 성체 한 마리가 전부인 미스터리 곤충인 셈입니다.   하지만 과학자들은 그 형태를 볼 때 이들 역시 울음 소리를 통해 짝짓기에서 암컷을 유인했을 것으로 보고 있습니다. 그런데 높은 고산 지대에서 먼 거리를 이동하는 곤충이기 때문에 낮은 피치의 울음 소리를 냈을 것으로 보입니다. 문제는 이런 소리는 암컷 만이 아니라 박쥐도 잘 듣는다는 것입니다. 사실 이들은 중생대 쥐라기 부터 존재했던 그룹으로 당시에는 박쥐가 없어 이런 방식이 잘 통했을 것입니다. 하지만 신생대에 박쥐가 등장하면서 플로팔랑곱

9000년 전 소녀의 모습을 복원하다.

( The final reconstruction. Credit: Oscar Nilsson )  그리스 아테나 대학과 스웨덴 연구자들이 1993년 발견된 선사 시대 소녀의 모습을 마치 살아있는 것처럼 복원하는데 성공했습니다. 이 유골은 그리스의 테살리아 지역의 테오페트라 동굴 ( Theopetra Cave )에서 발견된 것으로 연대는 9000년 전으로 추정됩니다. 유골의 주인공은 15-18세 사이의 소녀로 정확한 사인은 알 수 없으나 괴혈병, 빈혈, 관절 질환을 앓고 있었던 것으로 확인되었습니다.   이 소녀가 살았던 시기는 유럽 지역에서 수렵 채집인이 초기 농경으로 이전하는 시기였습니다. 다른 시기와 마찬가지로 이 시기의 사람들도 젊은 시절에 다양한 질환에 시달렸을 것이며 평균 수명 역시 매우 짧았을 것입니다. 비록 젊은 나이에 죽기는 했지만, 당시에는 이런 경우가 드물지 않았을 것이라는 이야기죠.   아무튼 문명의 새벽에 해당하는 시점에 살았기 때문에 이 소녀는 Dawn (그리스어로는  Avgi)라고 이름지어졌다고 합니다. 연구팀은 유골에 대한 상세한 스캔과 3D 프린팅 기술을 적용해서 살아있을 당시의 모습을 매우 현실적으로 복원했습니다. 그리고 그 결과 나타난 모습은.... 당시의 거친 환경을 보여주는 듯 합니다. 긴 턱은 당시를 살았던 사람이 대부분 그랬듯이 질긴 먹이를 오래 씹기 위한 것으로 보입니다.   강하고 억센 10대 소녀(?)의 모습은 당시 살아남기 위해서는 강해야 했다는 점을 말해주는 듯 합니다. 이렇게 억세보이는 주인공이라도 당시에는 전염병이나 혹은 기아에서 자유롭지는 못했기 때문에 결국 평균 수명은 길지 못했겠죠. 외모 만으로 평가해서는 안되겠지만, 당시의 거친 시대상을 보여주는 듯 해 흥미롭습니다.   참고  https://phys.org/news/2018-01-teenage-girl-years-reconstructed.html