(This image showing the entire disk of Jupiter in infrared light was compiled from a mosaic of nine separate pointings observed by the international Gemini Observatory, a program of NSF's NOIRLabon 29 May 2019. From a "lucky imaging" set of 38 exposures taken at each pointing, the research team selected the sharpest 10%, combining them to image one ninth of Jupiter's disk. Stacks of exposures at the nine pointings were then combined to make one clear, global view of the planet. Even though it only takes a few seconds for Gemini to create each image in a lucky imaging set, completing all 38 exposures in a set can take minutes -- long enough for features to rotate noticeably across the disk. In order to compare and combine the images, they are first mapped to their actual latitude and longitude on Jupiter, using the limb, or edge of the disk, as a reference. Once the mosaics are compiled into a full disk, the final images are some of the highest-resolution infrared views of Jupiter ever taken from the ground. Credit: International Gemini Observatory/NOIRLab/NSF/AURA, M.H. Wong (UC Berkeley) and team Acknowledgments: Mahdi Zamani)
(These images of Jupiter's Great Red Spot were made using data collected by the Hubble Space Telescope and the international Gemini Observatory on 1 April 2018. By combining observations captured at almost the same time from the two different observatories, astronomers were able to determine that dark features on the Great Red Spot are holes in the clouds rather than masses of dark material. Upper left (wide view) and lower left (detail): The Hubble image of sunlight (visible wavelengths) reflecting off clouds in Jupiter's atmosphere shows dark features within the Great Red Spot. Upper right: A thermal infrared image of the same area from Gemini shows heat energy emitted as infrared light. Cool overlying clouds appear as dark regions, but clearings in the clouds allow bright infrared emission to escape from warmer layers below. Lower middle: An ultraviolet image from Hubble shows sunlight scattered back from the haze over the Great Red Spot. The Great Red Spot appears red in visible light because the haze absorbs blue wavelengths. The Hubble data show that the haze continues to absorb even at shorter ultraviolet wavelengths. Lower right: A multiwavelength composite of Hubble and Gemini data shows visible light in blue and thermal infrared in red. The combined observations show that areas that are bright in infrared are clearings or places where there is less cloud cover blocking heat from the interior. The Hubble and Gemini observations were made to provide a wide-view context for Juno's 12th pass (Perijove 12). Credit: NASA, ESA, and M.H. Wong (UC Berkeley) and team)
(This illustration of lightning, convective towers (thunderheads), deep water clouds, and clearings in Jupiter’s atmosphere is based on data collected by the Juno spacecraft, the Hubble Space Telescope, and the international Gemini Observatory. Juno detects radio signals generated by lightning discharges. Because radio waves can pass through all of Jupiter’s cloud layers, Juno is able to detect lightning in deep clouds as well as lightning on the day side of the planet. Hubble detects sunlight that has reflected off clouds in Jupiter’s atmosphere. Different wavelengths penetrate to different depths in the clouds, giving researchers the ability to determine the relative heights of cloud tops. Gemini maps the thickness of cool clouds that block thermal infrared light from warmer atmospheric layers below the clouds. Thick clouds appear dark in the infrared maps, while clearings appear bright. The combination of observations can be used to map the cloud structure in three dimensions and infer details of atmospheric circulation. Thick, towering clouds form where moist air rises (upwelling and active convection). Clearings form where drier air sinks (downwelling). The clouds shown rise five times higher than similar convective towers in Earth’s relatively shallow atmosphere. The region illustrated covers a horizontal span one third greater than that of the continental United States. Credit: NASA, ESA, M.H. Wong (UC Berkeley), and A. James and M.W. Carruthers (STScI))
목성 탐사선 주노, 허블 우주 망원경, 그리고 지상의 제니미 노스 망원경 (Gemini North telescope)이 서로 협력해서 목성 대기의 비밀을 풀어헤친 연구 결과가 나왔습니다. 사실 지구나 지구 대기권에 있는 망원경은 목성의 주변을 공전하는 주노 만큼 세밀한 관측이 불가능합니다. 하지만, 주노라 하더라도 모든 파장의 관측 데이터를 확보하기는 어렵습니다. 따라서 마이클 웡 (Michael Wong of UC Berkeley)이 이끄는 과학자 팀은 3년에 걸쳐 세 개의 관측 데이터를 합치는 연구를 진행했습니다.
제미니 노스 망원경에 설치된 근적외선 이미저 Near Infrared Imager (NIRI)는 목성의 상층 대기를 뚫고 내부에 있는 따뜻하고 강력한 폭풍 구름의 존재를 확인할 수 있습니다. 다만 지구 대기의 간섭이 발생하기 때문에 연구팀은 여러 관측 데이터 가운데 대기의 간섭이 없는 럭키 이미징 (lucky imaging)들을 모아 데이터를 구축했습니다. 허블 망원경은 대기 상층부에서 구름에 의해 반사되는 파장을 관측했고 주노는 전파 관측을 통해 강력한 번개가 치는 구름 내부를 관측했습니다.
이들의 관측 데이터를 합쳐서 과학자들은 처음으로 목성의 대기 상층부의 입체적 구조를 관측할 수 있었습니다. 각각의 파장이 침투하는 정도가 다르다는 점을 이용한 연구입니다. 이번 연구에서는 목성의 대적점에 대한 상세한 관측이 이뤄져 목성 내부에서 나오는 적외선 파장의 열에너지를 확실하게 확인할 수 있었습니다.
목성은 가스 행성으로 사실 대기의 범위를 확실하게 정의할 순 없습니다. 하지만 그 대기 상층부가 단순한 줄무늬가 아니라 거대한 폭풍과 구름이 존재하는 매우 역동적인 기상 현상이 일어나는 장소라는 사실은 이전부터 알려져 있습니다. 목성 대기 깊은 곳에서 나오는 열에너지와 수분이 풍부한 상승 기류는 거대한 구름을 만들면서 목성 대기 상층으로 올라갑니다. 그러면서 지구에서 볼 수 없는 수준의 강력한 번개가 생성되는 것으로 보입니다. 건조해지고 차가워진 공기는 다시 내려와 목성 대기 상부에서 대류를 형성합니다.
이번 연구에서 제미니 노스의 해상도는 500km 정도였습니다. 이는 서울 부산 거리보다 멀지만, 거리를 생각하면 뉴욕에서 마이애미에 있는 차량의 헤드라이트 불빛 두 개를 구별하는 수준의 분해능이라고 할 수 있습니다. 앞으로 차세대 거대 망원경이 활약하면 이보다 더 상세한 관측이 가능해질 것으로 예상됩니다. 그러면 과학자들은 목성 대기의 더 깊숙한 장소까지 들여다볼 수 있을 것입니다.
참고
Michael H. Wong et al, High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019, The Astrophysical Journal Supplement Series (2020). DOI: 10.3847/1538-4365/ab775f
댓글
댓글 쓰기