기본 콘텐츠로 건너뛰기

R을 이용해 간단한 신경망 만들기 (14)





 본래는 인공지능 관련 포스트를 잠시 중단하고 로지스틱 회귀 분석 관련 포스트를 진행하려 했지만, 약간 하다 마는 듯한 모양세라 그냥 계속 진행해 보겠습니다. 앞서 소개한 neuralnet, nnet, RSNNS은 제 각기 다른 특성을 지닌 패키지로 R을 이용한 신경망 구성에서 널리 사용되기는 하지만, 몇 가지 단점을 가지고 있습니다. 가장 큰 단점은 모두 싱글 쓰레드를 사용하는 알고리즘으로 속도가 느리다는 것입니다. 


 최근에 개발되는 여러 딥러닝 관련 툴은 여러 개의 쓰레드는 물론이고 GPU 까지 활용해서 이미지, 음성 등 막대한 컴퓨팅 자원이 필요한 데이터를 처리할 수 있습니다. R에서도 이런 인공 지능 관련 툴을 사용할 수 있는데, 앞서 소개한 텐서플로나 케라스 그리고 앞으로 소개할 MXNet 등이 그런 경우입니다. 여기에 더해 윈도우 상에서도 멀티 쓰레드를 쉽게 지원하면서 R 환경에서 개발이 가능한 H2O 패키지 역시 많이 사용되고 있습니다. 


 H2O는 자바 기반으로 설치시 반드시 맞는 JAVA 버전이 설치되어 있어야 합니다. 일단 설치를 진행하면 JAVA 버전이 맞지 않는 경우 맞는 버전을 설치하라는 메세지가 나옵니다. 


install.packages("h2o", dependencies = T)
library(h2o) 
localH2O = h2o.init()


만약 자바 버전이 맞지 않으면 다음의 메세지가 나올 것입니다. 




 친절하게 맞는 자바 버전 (64비트)의 URL까지 지원하므로 여기서 설치를 진행하면 됩니다. 설치가 완료되면 다시 R 세선을 시작하고 H2O를 실행합니다. H2O는 R 스튜디오와 웹브라우저에서 사용이 가능합니다. 기본 옵션으로 쓰레드의 숫자와 메모리 크기를 지정할 수 있는데 저는 16쓰레드이므로 8개를 지정해 보겠습니다. -1이라고 하면 모든 쓰레드를 다 사용하게 됩니다. 


localH2O = h2o.init(ip = "localhost", port = 54321, nthreads = 8)   


  기본적으로 웹브라이저 로컬 호스트 환경은 포트가 54321이 기본값입니다. nthreads로 쓰레드 할당 숫자를 조정합니다. ?h2o.init 를 통해 상세한 옵션 설정 정보를 알 수 있습니다. 


> localH2O = h2o.init(ip = "localhost", port = 54321, nthreads = 8)
 Connection successful!

R is connected to the H2O cluster: 
    H2O cluster uptime:         1 seconds 597 milliseconds 
    H2O cluster timezone:       Asia/Seoul 
    H2O data parsing timezone:  UTC 
    H2O cluster version:        3.22.1.1 
    H2O cluster version age:    2 months and 10 days  
    H2O cluster name:           H2O_started_from_R_jjy05_unl204 
    H2O cluster total nodes:    1 
    H2O cluster total memory:   7.10 GB 
    H2O cluster total cores:    16 
    H2O cluster allowed cores:  16 
    H2O cluster healthy:        TRUE 
    H2O Connection ip:          localhost 
    H2O Connection port:        54321 
    H2O Connection proxy:       NA 
    H2O Internal Security:      FALSE 
    H2O API Extensions:         Algos, AutoML, Core V3, Core V4 
    R Version:                  R version 3.5.1 (2018-07-02) 


 이렇게 나왔다면 제대로 설치가 된 것입니다. 그리고 웹브라우저를 열어 http://localhost:54321를 치고 아래 화면이 나왔다면 H2O 패키지가 정상적으로 작동한 것입니다. 




 간단한 사용법을 알기 위해 iris 데이터를 가져와 보겠습니다. 이 경우 R에서 돌아가는 것이 아니기 때문에 R 스튜디오에서 작업을 진행해도 H2O에 데이터를 업로드 해줘야 합니다. as.h2o를 통해 데이터를 업로드 할 수 있으며 destination_frame = "" 을 통해 이름을 지정할 수 있습니다. 


data(iris)
iris_h2o <- as.h2o="" destination_frame="iris_h2o" iris="" span="">

 제대로 올라갔는지 알기 위해 웹브라우저에서 확인을 해보겠습니다. 초기 화면에서 getFrames를 치고 올라간 데이터 (프레임)를 살펴보면 iris_h2o의 모습이 보이며 이를 클릭하면 세부 정보를 볼 수 있습니다. 





h2o.ls()의 코드를 통해 올라간 데이터를 볼 수 있으며 나머지는 R 코드와 동일하게 객체를 볼 수 있습니다. 


head(iris_h2o)
str(iris_h2o)


> h2o.ls()
       key
1 iris_h2o
> head(iris_h2o)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
> str(iris_h2o)
Class 'H2OFrame'  
 - attr(*, "op")= chr "Parse"
 - attr(*, "id")= chr "iris_h2o"
 - attr(*, "eval")= logi FALSE
 - attr(*, "nrow")= int 150
 - attr(*, "ncol")= int 5
 - attr(*, "types")=List of 5
  ..$ : chr "real"
  ..$ : chr "real"
  ..$ : chr "real"
  ..$ : chr "real"
  ..$ : chr "enum"
 - attr(*, "data")='data.frame': 10 obs. of  5 variables:
  ..$ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9
  ..$ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1
  ..$ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5
  ..$ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1
  ..$ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1



 H2O 클러스터를 끄기 위해서는 h2o::h2o.shutdown(prompt = FALSE) 의 명령어로 빠져나오면 됩니다. R에서 직접 돌아가는 툴이 아니기 때문이죠. 셧다운 이후에는 웹브라우저상에서 http://localhost:54321/flow/index.html라고 해도 아무것도 나오지 않습니다. 셧다운 하지 않은 경우 R 세션을 종료해도 시스템 자원을 그대로 사용할 수 있으니 주의가 필요합니다. H2O는 학습 내용에 따라 매우 많은 자원을 소모할 수 있습니다. 


 참고 







댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...