기본 콘텐츠로 건너뛰기

사후 검정 - Duncan 의 다중 검정


 던컨의 다중 검정 (Duncan's new multiple range test (MRT)) 역시 여러 가지 명칭으로 불리는데, 분산 분석의 사후 검정 방법 가운데 앞서 소개한 Tukey's HSD, 그리고 나중에 소개할 사폐 등과 세트로 등장합니다. 흥미로운 사실은 이 방법을 개발한 던컨 (David B. Duncan)이 같은 시대에 (1955년 발표) 살았던 헨리 사폐 (Henry Scheffé)와 존 터키 (John W. Tukey)와 논쟁을 벌였다는 점입니다. 사폐와 터키는 던컨의 다중검정이 지나치게 자유롭다고 비판했고 던컨은 여기에 맞서 자신의 방법이 옳다고 주장했습니다. 


 아무튼 여기서 우리가 짐작할 수 있는 것은 Tukey's HSD에서 차이가 없다고 나와도 던컨의 다중 검정에서는 차이가 있다고 나오는 등 검정 방법 간에 서로 차이가 있을 수 있다는 점입니다. R의 기본 함수로 지정된 Tukey's HSD와 달리 던컨의 다중 검정은 별도의 패키지가 필요합니다. agriolae 패키지를 설치한 후 duncan.test 를 사용합니다. 

> install.packages("agricolae")

 를 치면 꽤 여러 가지가 나옵니다. 아무튼 라이브러리를 불러들여 사용하는 건 마찬가지겠죠. duncan.test(out,"Class",alpha = 0.05, console = TRUE) 을 사용하는데, out 은  anova 객체이고 Class는 비교하고자 하는 그룹입니다. 물론 키의 차이가 있는지를 비교하게 됩니다. 


> library(agricolae)
> #n=50
> set.seed(1234)
> A<-rnorm span="">
> set.seed(123)
> B<-rnorm span="">
> set.seed(12345)
> C<-rnorm span="">
> DFA<-data .frame="" class="" height="" span="">
> colnames(DFA)<-c height="" lass="" span="">
> DFB<-data .frame="" class="" height="" span="">
> colnames(DFB)<-c height="" lass="" span="">
> DFC<-data .frame="" class="" height="" span="">
> colnames(DFC)<-c height="" lass="" span="">
> DF2<-rbind span="">
> out=aov(height~Class, data=DF2)
> summary(out)
             Df Sum Sq Mean Sq F value   Pr(>F)    
Class         2    447  223.56   9.436 0.000139 ***
Residuals   147   3483   23.69                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> duncan.test(out,"Class",alpha = 0.05, console = TRUE)

Study: out ~ "Class"

Duncan's new multiple range test
for height 

Mean Square Error:  23.69198 

Class,  means

    height      std  r      Min      Max
A 167.7347 4.425218 50 158.2715 182.0792
B 169.1720 4.629350 50 159.1669 179.8448
C 171.8978 5.482930 50 159.0982 181.9842

Alpha: 0.05 ; DF Error: 147 

Critical Range
       2        3 
1.923840 2.024913 

Means with the same letter are not significantly different.

    height groups
C 171.8978      a
B 169.1720      b
A 167.7347      b


 사실 위의 결과를 해석하기는 좀 쉽지 않습니다. 결과를 해석할 단서는 Critical Range에 있습니다. 2와3은 Duncan's LSR (Least Significant Range)를 의미하며 집단간 평균이 이 값보다 차이가 크면 차이가 있다고 판단하는 근거가 됩니다. LSR2 = 1.923840, LSR3 = 2.024913 이 되는 데 LSR2/3의 차이는 한 단계 인접그룹인지 두 단계 인접 그룹인지를 판단하는 근거입니다. 아무튼 이 값에 따라 C반과 B/A 반이 차이가 있는지를 보면 C-B 반의 차이는 2.7258이며 C-A 반의 차이는 4.1631 입니다. 즉 차이가 있다고 판정할 수 있습니다. 차이가 있는 평균값 옆에는 알파벳 a가 붙는 것으로 보입니다. 


 여기서도 알 수 있지만, 던컨의 다중검정은 사실 해석이 복잡한데다 심지어 ANOVA에서 유의하지 않은데도 유의한 결과를 얻을 수도 있어 널리 사용되지 않고 있습니다. 마지막으로 한 가지 더 검증해 보겠습니다. 


> #n=30
> set.seed(1234)
> A<-rnorm span="">
> set.seed(123)
> B<-rnorm span="">
> set.seed(12345)
> C<-rnorm span="">
> DFA<-data .frame="" class="" height="" span="">
> colnames(DFA)<-c height="" lass="" span="">
> DFB<-data .frame="" class="" height="" span="">
> colnames(DFB)<-c height="" lass="" span="">
> DFC<-data .frame="" class="" height="" span="">
> colnames(DFC)<-c height="" lass="" span="">
> DF2<-rbind span="">
> out=aov(height~Class, data=DF2)
> summary(out)
            Df Sum Sq Mean Sq F value Pr(>F)  
Class        2  152.5   76.24   3.442 0.0364 *
Residuals   87 1927.1   22.15                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> TukeyHSD(out)
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = height ~ Class, data = DF2)

$Class
         diff        lwr      upr     p adj
B-A 0.2466061 -2.6510066 3.144219 0.9775584
C-A 2.8761599 -0.0214528 5.773773 0.0521622
C-B 2.6295538 -0.2680589 5.527167 0.0832488

> duncan.test(out,"Class",alpha = 0.05, console = TRUE)

Study: out ~ "Class"

Duncan's new multiple range test
for height 

Mean Square Error:  22.15056 

Class,  means

    height      std  r      Min      Max
A 168.5179 4.514915 30 158.2715 182.0792
B 168.7645 4.905154 30 159.1669 177.9346
C 171.3940 4.691129 30 161.9102 180.0866

Alpha: 0.05 ; DF Error: 87 

Critical Range
       2        3 
2.415336 2.541599 

Means with the same letter are not significantly different.

    height groups
C 171.3940      a
B 168.7645      b
A 168.5179      b


 앞서 소개한 예제입니다. Tukey HSD에서 유의하지 않은데도 던컨은 유의한 결과가 나왔습니다. 사실 이런 이유로 인해 당시에도 논쟁이 제법 있었을 것 같습니다. 일반적으로 널리 활용되는 방법은 아니고 저도 거의 사용하지 않는데 혹시 필요하신 분이 있을지 몰라 올려둡니다. 

댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...