기본 콘텐츠로 건너뛰기

태양계 이야기 941 - 가니메데의 소리를 들은 주노 탐사선



 (This JunoCam image shows two of Jupiter's large rotating storms, captured on Juno’s 38th perijove pass, on Nov. 29, 2021. Credit: NASA/JPL-Caltech/SwRI/MSSS, Image processing: Kevin M. Gill CC BY)



 앞서 소개한 것처럼 나사의 주노 탐사선은 궤도를 크게 변경한 연장 임무를 통해 목성의 거대 위성인 이오, 유로파, 가니메데를 관측하고 있습니다. 본래 극궤도를 돌면서 목성을 관측하는 탐사선이라 위성들과는 수직 방향으로 공전하기 때문에 관측 가능한 시간은 매우 짧지만, 그래도 갈릴레오 탐사선 이후 수십 년 만에 목성의 위성에 근접 관측을 시행한다는 사실 하나만으로도 상당한 의미가 있습니다. 




 이전 포스트: https://blog.naver.com/jjy0501/222213372504


                https://blog.naver.com/jjy0501/222391881495



 주노 탐사선의 책임 연구자인 사우스웨스트 연구소의 스콧 볼튼(Principal Investigator Scott Bolton of the Southwest Research Institute in San Antonio)은 지난 7월 7일 주노의 가니메데 플라이바이에서 얻은 자기장 데이터를 공개했습니다. 참고로 이 데이터는 34번째 목성 궤도 공전 (Perijove 34)에서 얻어진 것으로 당시 주노는 가니메데에서 1038km 떨어진 지점까지 접근했습니다. 위성과의 상대 속도는 시속 67,000km에 달했습니다. 


 

(Radio emissions collected during Juno’s June 7, 2021, flyby of Jupiter’s moon Ganymede are presented here, both visually and in sound. Credit: NASA/JPL-Caltech/SwRI/Univ of Iowa)



 가니메데는 목성의 강력한 자기장을 지나면서 전자기파를 방출하는데, 이를 통해 가니메데의 내부 구조를 들여다볼 수 있는 기회가 생깁니다. 그리고 이 전자기파를 시각화 및 음향화 할 수 있는데, 위의 영상이 그것입니다. 



 가니메데는 주노가 방문하는 첫 번째 위성입니다. 주노는 플라이바이를 통해 점점 궤도를 좁혀나가 2022년 9월에는 유로파, 2023-24년에는 이오를 방문 한 후 2025년에는 연장 임무를 종료하게 됩니다. 여기서 추가 연장 임무를 진행하게 될지는 우주선 상태에 따라 달라질 것입니다. 






(A graphic showing the path of Juno's past and future orbits of Jupiter. Credit: NASA/JPL-Caltech/SwRI)



 참고로 목성 플라이바이는 여전히 진행하고 있기 때문에 목성 표면 관측 역시 2025년까지 연장됩니다. 2016년 궤도 진입 이후 사실상 9년 간 임무를 수행하게 된 셈인데, 아마도 추가 연장 임무도 가능하지 않을까 생각해 봅니다. 



 유로파와 이오 플라이바이에서 얻게 될 데이터 역시 궁금합니다. 



 참고 



https://phys.org/news/2021-12-juno-spacecraft-jupiter-moon.html


https://en.wikipedia.org/wiki/Juno_(spacecraft)

댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다. 잘 쓰지도 않을 방법을 열심히 공부하는 것은 아무래도 효율

150년 만에 다시 울린 희귀 곤충의 울음 소리

  ( The katydid Prophalangopsis obscura has been lost since it was first collected, with new evidence suggesting cold areas of Northern India and Tibet may be the species' habitat. Credit: Charlie Woodrow, licensed under CC BY 4.0 ) ( The Museum's specimen of P. obscura is the only confirmed member of the species in existence. Image . Credit: The Trustees of the Natural History Museum, London )  과학자들이 1869년 처음 보고된 후 지금까지 소식이 끊긴 오래 전 희귀 곤충의 울음 소리를 재현하는데 성공했습니다. 프로팔랑곱시스 옵스큐라 ( Prophalangopsis obscura)는 이상한 이름만큼이나 이상한 곤충으로 매우 희귀한 메뚜기목 곤충입니다. 친척인 여치나 메뚜기와는 오래전 갈라진 독자 그룹으로 매우 큰 날개를 지니고 있으며 인도와 티벳의 고산 지대에 사는 것으로 보입니다.   유일한 표본은 수컷 성체로 2005년에 암컷으로 생각되는 2마리가 추가로 발견되긴 했으나 정확히 같은 종인지는 다소 미지수인 상태입니다. 현재까지 확실한 표본은 수컷 성체 한 마리가 전부인 미스터리 곤충인 셈입니다.   하지만 과학자들은 그 형태를 볼 때 이들 역시 울음 소리를 통해 짝짓기에서 암컷을 유인했을 것으로 보고 있습니다. 그런데 높은 고산 지대에서 먼 거리를 이동하는 곤충이기 때문에 낮은 피치의 울음 소리를 냈을 것으로 보입니다. 문제는 이런 소리는 암컷 만이 아니라 박쥐도 잘 듣는다는 것입니다. 사실 이들은 중생대 쥐라기 부터 존재했던 그룹으로 당시에는 박쥐가 없어 이런 방식이 잘 통했을 것입니다. 하지만 신생대에 박쥐가 등장하면서 플로팔랑곱

근육 떨림을 막는 전자 임플란트

  (Three of the muscle-stimulating implanted electrodes – these ones are attached to silicone tubes which were used to more easily extract them from test subjects' bodies once the study was completed. Credit: Fraunhofer IBMT) ​ (A diagram of the system. Credit: Equinor Open Data License) ​ ​ ​ 근육이 자기 의지와 관계 없이 갑자기 수축하거나 떨림 (tremor, 진전) 증상이 나타나는 경우 현재까지는 완전히 막을 수 있는 치료제가 없습니다. 하지만 스페인 국립 연구 위원회(Spanish National Research Council)가 이끄는 독일, 아이슬란드, 영국, 미국 의 과학자들은 이 문제에 대한 좀 더 근본적인 해결책을 내놓았습니다. ​ ​ 이 연구는 국제 과학 컨소시엄인 EXTEND 프로젝트의 일부로 신체에 신경 신호를 조절하는 전극을 넣어 움직임을 조절하는 것이 목표입니다. ​ ​ 방법은 간단합니다. 생체 적합 물질로 만든 길이 3cm, 지름 1mm 크기의 백금-이리듐/실리콘 (platinum-iridium/silicone) 임플란트를 근육 속에 넣습니다. 각 임플란트엔 센서와 액추에이터 역할을 할 두 개의 전극이 있습니다. 외부에 있는 전극은 전원을 공급하는 기능도 합니다. ​ ​ 이 임플란트는 근육의 떨림이나 이상 동작을 파악하면 신호를 보내 움직임을 멈추게 합니다. 초기 임상 실험 결과는 1-2시간 정도 작동으로도 더 긴 시간동안 떨림 증상을 막을 수 있는 것으로 나타났습니다. ​ ​ 실제 임상에서 사용하게 될지는 지금 단계에서 말하기 이르지만, 먼가 사이버펑크의 세계가 좀 더 가까워진 것 같은 전자 임플란트 같습니다. ​ ​ 참고 ​ ​ https://newatlas.com/health-wel