기본 콘텐츠로 건너뛰기

태양계 이야기 938 - 태양 코로나에 다녀온 파커 솔라 프로브 이야기



 (A Spacecraft Has “Touched” the Sun for the First Time. Credit: NASA / Johns Hopkins APL / Ben Smith)




(As Parker Solar Probe ventures closer to the Sun, it’s crossing into uncharted regimes and making new discoveries. This image represents Parker Solar Probe's distances from the Sun for some of these milestones and discoveries.

Credits: NASA's Goddard Space Flight Center/Mary P. Hrybyk-Keith)




(As Parker Solar Probe passed through the corona on encounter nine, the spacecraft flew by structures called coronal streamers. These structures can be seen as bright features moving upward in the upper images and angled downward in the lower row. Such a view is only possible because the spacecraft flew above and below the streamers inside the corona. Until now, streamers have only been seen from afar. They are visible from Earth during total solar eclipses.

Credits: NASA/Johns Hopkins APL/Naval Research Laboratory)



 2018년 태양을 탐사하기 위해서 발사된 파커 솔라 프로브 (Parker Solar Probe)의 첫 태양 코로나 탐사 연구 결과가 저널 Physical Review Letters에 발표됐습니다. 파커 솔라 프로브는 길쭉한 타원 궤도를 돌면서 주기적으로 태양에 매우 근접하는데, 지난 2021년 4월 28일에는 태양 반지름의 18.8배에 달하는 1300만km 떨어진 지점까지 접근했습니다. 이때 파커 솔라 프로브는 태양 대기의 가장 외곽 경계인 알벤 경계면 (Alfvén critical surface)을 지나 태양 대기에 진입한 것으로 보입니다. 다시 말해 인류 역사상 최초로 코로나 안쪽으로 들어갔습니다. 



 파커 솔라 프로브: https://blog.naver.com/jjy0501/221323189040



(For the first time in history, a spacecraft has touched the Sun. NASA’s Parker Solar Probe has now flown through the Sun’s upper atmosphere – the corona – and sampled particles and magnetic fields there.

Credits: NASA's Goddard Space Flight Center/Joy Ng)



 알벤 경계는 태양의 자기장이 강력하게 작용하는 경계면으로 여기서는 태양에서 나오는 입자가 태양에 잡혀 있어 속도도 느리고 쉽게 빠져나오지 못합니다. 반면 이 경계를 지나면 그때부터는 태양 입자가 빠르게 직진하는 태양풍이 되며 다시는 태양권으로 돌아오지 못합니다. 여기를 태양 대기권의 경계로 봐도 무방한 이유입니다. 파커 솔라 프로브는 여기서 태양의 강력한 자기장에 의해 꼬이는 스위치백(switchback) 현상을 포함해 강력한 자기장을 실제로 관측했습니다. (위 영상에서 2분 40초 이후 확인)



 하지만 파커 솔라 프로브의 모험은 이제 중간 지점을 지났을 뿐입니다. 앞서 소개한 것처럼 파커 솔라 프로브는 금성 플라이바이를 통해 계속해서 속도를 높여 2025년에는 마침내 태양에서 690만km 떨어진 지점까지 진출할 계획입니다. 이때의 속도는 인간이 만든 어떤 우주선보다 빠른 초속 192km에 도달합니다. 



 이전 포스트: https://blog.naver.com/jjy0501/222331432620



 과학자들은 이를 통해 코로나와 태양의 수많은 비밀들을 파헤칠 것입니다. 예를 들어 코로나가 왜 태양 자체보다 훨씬 뜨거운 섭씨 수백도의 고온인지를 밝힐 수 있는 결정적 단서가 나올 수 있습니다. 앞으로 파커 솔라 프로브가 어떤 정보를 전해줄지 기대됩니다. 



 참고 



https://phys.org/news/2021-12-parker-solar-probe-spacecraft-sun.html


https://www.nasa.gov/feature/goddard/2021/nasa-enters-the-solar-atmosphere-for-the-first-time-bringing-new-discoveries


J. C. Kasper et al, Parker Solar Probe Enters the Magnetically Dominated Solar Corona, Physical Review Letters (2021). DOI: 10.1103/PhysRevLett.127.255101


 

댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...