기본 콘텐츠로 건너뛰기

자율적으로 씨앗을 뿌리는 농업용 드론




 (Credit: Pyka)



 농업 분야에서 드론은 이미 많은 활약을 하고 있습니다. 좁은 공간에서도 운용이 가능하고 비용도 저렴한 농업용 드론으로 씨앗을 뿌리거나 농약을 살포하면 시간과 비용을 절감할 수 있기 때문입니다. 최근에는 아예 자율적으로 움직이는 드론을 이용해 이 과정조차 자동화하려는 시도가 이어지고 있습니다. 



 캘리포니아에 있는 스타트업인 파이카 (Pyka)가 개발한 펠리컨 (Pelican) 드론도 그 중 하나입니다. 최근 미 당국에서 승인 받은 펠리컨은 비교적 대형 드론으로 길이 6m, 날개 폭 11.6m에 페이로드는 283kg에 달합니다. 20kW 전기 모터 3개로 비행하는 전기 비행기로 최고 시속 145km, 항속 거리 110km입니다. 여객용으로는 부족한 수치이지만, 목적이 농업용임을 생각하면 미국 기준으로도 충분한 성능입니다. 다른 한편으로는 미국처럼 거대한 농경지가 있는 국가에서나 나올 법한 농업용 드론이기도 합니다. 



 펠리컨은 저고도 저속 비행에 특화된 대형 드론으로 낮은 고도로 비행하면서 씨앗을 자율적으로 살포합니다. 미리 저장된 3D 지도와 항로에 따라 씨앗을 뿌린 후 배터리가 방전되기 전에 다시 기지로 돌아와 배터리를 충전하거나 교체할 수 있습니다. 펠리컨은 150피트 (46m) 정도의 활주로만 있으면 이착륙이 가능해 농가에서 사용하기에 적합합니다. 



 제조사 측에 따르면 펠리컨은 1m 이내 오차로 정해진 경로를 따라 비행할 수 있으며 시간 당 135에이커의 농지에 씨를 뿌릴 수 있습니다. 대략 1에이커 땅에 7.6리터의 씨앗을 균등하게 뿌릴 수 있습니다. 이 드론은 뉴질랜드에서 테스트를 마쳤으며 미항공청(US Federal Aviation Administration)의 승인을 받은 만큼 머지 않은 미래에 미국에서 테스트를 진행할 것으로 보입니다. 기대만큼 성능이 나오고 경제성이 있다면 실제로 미국이나 호주처럼 농경지가 넓은 지역에서 활약하게 될 것으로 보입니다. 



 아무튼 자동화된 농기계와 드론이 무인으로 농사를 짓는 미래가 그렇게 멀지는 않았을지도 모르겠다는 생각입니다. 



 참고 



https://newatlas.com/drones/pyka-pelican-autonomous-electric-crop-spraying-drone/

댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다...

9000년 전 소녀의 모습을 복원하다.

( The final reconstruction. Credit: Oscar Nilsson )  그리스 아테나 대학과 스웨덴 연구자들이 1993년 발견된 선사 시대 소녀의 모습을 마치 살아있는 것처럼 복원하는데 성공했습니다. 이 유골은 그리스의 테살리아 지역의 테오페트라 동굴 ( Theopetra Cave )에서 발견된 것으로 연대는 9000년 전으로 추정됩니다. 유골의 주인공은 15-18세 사이의 소녀로 정확한 사인은 알 수 없으나 괴혈병, 빈혈, 관절 질환을 앓고 있었던 것으로 확인되었습니다.   이 소녀가 살았던 시기는 유럽 지역에서 수렵 채집인이 초기 농경으로 이전하는 시기였습니다. 다른 시기와 마찬가지로 이 시기의 사람들도 젊은 시절에 다양한 질환에 시달렸을 것이며 평균 수명 역시 매우 짧았을 것입니다. 비록 젊은 나이에 죽기는 했지만, 당시에는 이런 경우가 드물지 않았을 것이라는 이야기죠.   아무튼 문명의 새벽에 해당하는 시점에 살았기 때문에 이 소녀는 Dawn (그리스어로는  Avgi)라고 이름지어졌다고 합니다. 연구팀은 유골에 대한 상세한 스캔과 3D 프린팅 기술을 적용해서 살아있을 당시의 모습을 매우 현실적으로 복원했습니다. 그리고 그 결과 나타난 모습은.... 당시의 거친 환경을 보여주는 듯 합니다. 긴 턱은 당시를 살았던 사람이 대부분 그랬듯이 질긴 먹이를 오래 씹기 위한 것으로 보입니다.   강하고 억센 10대 소녀(?)의 모습은 당시 살아남기 위해서는 강해야 했다는 점을 말해주는 듯 합니다. 이렇게 억세보이는 주인공이라도 당시에는 전염병이나 혹은 기아에서 자유롭지는 못했기 때문에 결국 평균 수명은 길지 못했겠죠. 외모 만으로 평가해서는 안되겠지만, 당시의 거친 시대상을 보여주는 듯 해 흥미롭습니다.   참고  https://phys.org/news/2018-01-te...

근육 떨림을 막는 전자 임플란트

  (Three of the muscle-stimulating implanted electrodes – these ones are attached to silicone tubes which were used to more easily extract them from test subjects' bodies once the study was completed. Credit: Fraunhofer IBMT) ​ (A diagram of the system. Credit: Equinor Open Data License) ​ ​ ​ 근육이 자기 의지와 관계 없이 갑자기 수축하거나 떨림 (tremor, 진전) 증상이 나타나는 경우 현재까지는 완전히 막을 수 있는 치료제가 없습니다. 하지만 스페인 국립 연구 위원회(Spanish National Research Council)가 이끄는 독일, 아이슬란드, 영국, 미국 의 과학자들은 이 문제에 대한 좀 더 근본적인 해결책을 내놓았습니다. ​ ​ 이 연구는 국제 과학 컨소시엄인 EXTEND 프로젝트의 일부로 신체에 신경 신호를 조절하는 전극을 넣어 움직임을 조절하는 것이 목표입니다. ​ ​ 방법은 간단합니다. 생체 적합 물질로 만든 길이 3cm, 지름 1mm 크기의 백금-이리듐/실리콘 (platinum-iridium/silicone) 임플란트를 근육 속에 넣습니다. 각 임플란트엔 센서와 액추에이터 역할을 할 두 개의 전극이 있습니다. 외부에 있는 전극은 전원을 공급하는 기능도 합니다. ​ ​ 이 임플란트는 근육의 떨림이나 이상 동작을 파악하면 신호를 보내 움직임을 멈추게 합니다. 초기 임상 실험 결과는 1-2시간 정도 작동으로도 더 긴 시간동안 떨림 증상을 막을 수 있는 것으로 나타났습니다. ​ ​ 실제 임상에서 사용하게 될지는 지금 단계에서 말하기 이르지만, 먼가 사이버펑크의 세계가 좀 더 가까워진 것 같은 전자 임플란트 같습니다. ​ ​ 참고 ​ ​ https://newatlas.com/health-wel...