기본 콘텐츠로 건너뛰기

태양계 이야기 1035 - 가니메데 표면에서 포착된 과산화수소


 

(Maps of Ganymede’s 3.5 μm H2O2 absorption compared to those of the 3.1 μm Fresnel peaks of water ice and corresponding projections of the U.S. Geological Survey Voyager-Galileo imaging mosaic. H2O2 appears constrained to the upper latitudes, particularly on the leading hemisphere, which exhibits sharp boundaries at approximately ±30° to 35° latitude. These boundaries are roughly coincident with the onset of Ganymede’s polar frost caps and with the latitudes at which most of the impinging Jovian magnetospheric particles can access the surface. Maps of the Fresnel reflection peak of water ice, which generally track the distribution of ice deduced from shorter-wavelength water bands, also show the areas of greatest H2O2 on the leading hemisphere to be enriched in water ice. The trailing hemisphere shows comparatively weak Fresnel reflections and, overall, less-icy spectra. This hemispheric dichotomy in water ice may help explain the leading/trailing contrast in H2O2, while the overall polar H2O2 distribution may reflect a combination of precursor water availability and temperature and/or radiation intensity effects. The approximate average boundary between open and closed field lines from are included as red dashed lines. The 60°S, 30°S, 0°N, 30°N, and 60°N parallels are also included in gray for both hemispheres. The leading-hemisphere map includes the 45°W, 90°W, and 135°W meridians, while the trailing-hemisphere map shows those for 225°W, 270°W, and 315°W. Credit: Science Advances (2023). DOI: 10.1126/sciadv.adg3724)

목성은 매우 큰 네 개의 위성을 주위에 거느리고 있을 뿐 아니라 큰 영향력을 발휘하고 있어 미니 태양계로 불립니다. 특히 태양과 다른 행성과 달리 목성과 목성의 4대 위성은 매우 가까이 있어 특이한 현상을 볼 수 있습니다. 태양계에서 가장 화산 활동이 활발한 천체인 이오나 내부에 바다가 있는 것으로 보이는 유로파가 대표적입니다.

반면 가니메데는 태양계 최대 크기의 위성임에도 불구하고 유로파 때문에 상대적으로 주목을 받지 못하고 있습니다. 목성의 위성 탐사는 생명체 존재 가능성이 있는 유로파에 집중되어 있습니다.

하지만 제임스 웹 우주 망원경의 데이터를 분석한 국제 과학자 팀은 가니메데에 대한 흥미로운 사실 하나를 발견했습니다. 바로 표면에 과산화수소 (hydrogen peroxide)가 존재한다는 사실입니다.

사실 이는 이론적으로 이미 예측된 일이기도 합니다. 목성은 태양에서는 멀리 떨어져 있지만, 지구의 수천배에 달하는 강력한 자기장을 지니고 있어 위성의 표면 물질을 변화시킬 수 있습니다. 표면에 있는 물의 얼음이 오존, 과산화수소 또는 산소 등으로 변화시키는 것입니다. 다만 지금까지 이를 실제로 관측하기는 어려웠습니다.

제임스 웹 우주 망원경의 NIRSpec Integral Field Unit은 3.5 미이크로미터 파장에서 가니메데 표면에 있는 과산화수소의 분포를 관측했습니다. 그 결과 과산화수소는 가니메데 전체가 아니라 고위도 지역에 집중된 반면 산소는 저위도 지역 반대편에 집중된 것을 확인했습니다. 유로파에서는 과산화수소가 주로 적도 부근에 있는 것과 반대입니다

목성의 4대 위성은 목성의 거대한 자기장 안을 지나고 있기 때문에 위치에 따라 서로 다른 영향을 받는 것으로 보입니다. 이는 태양계에서 목성권이 아니면 보기 힘든 현상입니다. 우주에 있는 목성보다 더 큰 가스 행성에서는 어떤 특이한 현상이 일어날지 궁금해지는 연구 결과 입니다.

참고

https://phys.org/news/2023-07-hydrogen-peroxide-jupiter-moon-ganymede.html

Samantha K. Trumbo et al, Hydrogen peroxide at the poles of Ganymede, Science Advances (2023). DOI: 10.1126/sciadv.adg3724

댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다...

9000년 전 소녀의 모습을 복원하다.

( The final reconstruction. Credit: Oscar Nilsson )  그리스 아테나 대학과 스웨덴 연구자들이 1993년 발견된 선사 시대 소녀의 모습을 마치 살아있는 것처럼 복원하는데 성공했습니다. 이 유골은 그리스의 테살리아 지역의 테오페트라 동굴 ( Theopetra Cave )에서 발견된 것으로 연대는 9000년 전으로 추정됩니다. 유골의 주인공은 15-18세 사이의 소녀로 정확한 사인은 알 수 없으나 괴혈병, 빈혈, 관절 질환을 앓고 있었던 것으로 확인되었습니다.   이 소녀가 살았던 시기는 유럽 지역에서 수렵 채집인이 초기 농경으로 이전하는 시기였습니다. 다른 시기와 마찬가지로 이 시기의 사람들도 젊은 시절에 다양한 질환에 시달렸을 것이며 평균 수명 역시 매우 짧았을 것입니다. 비록 젊은 나이에 죽기는 했지만, 당시에는 이런 경우가 드물지 않았을 것이라는 이야기죠.   아무튼 문명의 새벽에 해당하는 시점에 살았기 때문에 이 소녀는 Dawn (그리스어로는  Avgi)라고 이름지어졌다고 합니다. 연구팀은 유골에 대한 상세한 스캔과 3D 프린팅 기술을 적용해서 살아있을 당시의 모습을 매우 현실적으로 복원했습니다. 그리고 그 결과 나타난 모습은.... 당시의 거친 환경을 보여주는 듯 합니다. 긴 턱은 당시를 살았던 사람이 대부분 그랬듯이 질긴 먹이를 오래 씹기 위한 것으로 보입니다.   강하고 억센 10대 소녀(?)의 모습은 당시 살아남기 위해서는 강해야 했다는 점을 말해주는 듯 합니다. 이렇게 억세보이는 주인공이라도 당시에는 전염병이나 혹은 기아에서 자유롭지는 못했기 때문에 결국 평균 수명은 길지 못했겠죠. 외모 만으로 평가해서는 안되겠지만, 당시의 거친 시대상을 보여주는 듯 해 흥미롭습니다.   참고  https://phys.org/news/2018-01-te...

150년 만에 다시 울린 희귀 곤충의 울음 소리

  ( The katydid Prophalangopsis obscura has been lost since it was first collected, with new evidence suggesting cold areas of Northern India and Tibet may be the species' habitat. Credit: Charlie Woodrow, licensed under CC BY 4.0 ) ( The Museum's specimen of P. obscura is the only confirmed member of the species in existence. Image . Credit: The Trustees of the Natural History Museum, London )  과학자들이 1869년 처음 보고된 후 지금까지 소식이 끊긴 오래 전 희귀 곤충의 울음 소리를 재현하는데 성공했습니다. 프로팔랑곱시스 옵스큐라 ( Prophalangopsis obscura)는 이상한 이름만큼이나 이상한 곤충으로 매우 희귀한 메뚜기목 곤충입니다. 친척인 여치나 메뚜기와는 오래전 갈라진 독자 그룹으로 매우 큰 날개를 지니고 있으며 인도와 티벳의 고산 지대에 사는 것으로 보입니다.   유일한 표본은 수컷 성체로 2005년에 암컷으로 생각되는 2마리가 추가로 발견되긴 했으나 정확히 같은 종인지는 다소 미지수인 상태입니다. 현재까지 확실한 표본은 수컷 성체 한 마리가 전부인 미스터리 곤충인 셈입니다.   하지만 과학자들은 그 형태를 볼 때 이들 역시 울음 소리를 통해 짝짓기에서 암컷을 유인했을 것으로 보고 있습니다. 그런데 높은 고산 지대에서 먼 거리를 이동하는 곤충이기 때문에 낮은 피치의 울음 소리를 냈을 것으로 보입니다. 문제는 이런 소리는 암컷 만이 아니라 박쥐도 잘 듣는다는 것입니다. 사실 이들은 중생대 쥐라기 부터 존재했던 그룹으로 당시에는 박쥐가 없어 이런 방식이 잘 통했을 것입니다. 하지만...