기본 콘텐츠로 건너뛰기

HDD는 20년은 지속된다?


 하드디스크(HDD)는 현재까지 저장 장치에서 가장 큰 비중을 차지하고 있습니다. 하지만 모바일에 시대가 오면서 점차 플래쉬 스토리지를 가진 제품들이 많아지고 있습니다. 여기에 SSD가 점차 대중화되면서 이제는 노트북은 물론이고 서버나 PC에도 SSD 기반 스토리지를 사용하는 경우가 많아지고 있습니다. 따라서 HDD의 수요는 줄어들 수밖에 없죠.
 다만 현재는 데이터 센터에서 점차 많은 데이터 저장에 대한 수요가 생기면서 기업 시장이 커지기 때문에 HDD 수요 감소를 상쇄하는 역할을 하고 있습니다.
 문제는 SSD의 기반이 되는 낸드 플래쉬 및 기타 비휘발성 메모리 기술이 빠른 속도로 발전하고 있다는 것입니다. 삼성전자를 필두로 한 낸드 플래쉬 제조사들은 3D 낸드 기술을 이용해서 미세 공정으로 인한 문제를 줄이면서 고용량화를 이룩하고 있습니다.
 인텔은 3D 크로스포인트라는 새로운 비휘발성 고속 메모리를 개발해서 이 분야에서 혁신을 이룩할 수 있다고 주장하고 있습니다. 과연 10년 후에도 HDD가 살아남을 것인지에 대해서 이제는 회의적인 시각이 늘어나고 있습니다.  
 속도라는 측면에서 HDD가 SSD를 따라잡을 수 없기 때문에 결국 HDD는 가격대 용량에서 승부를 봐야 합니다. 현재 HDD 시장의 양대 축인 씨게이트는 앞으로 HDD가 20년은 살아남을 수 있다고 주장했습니다. HDD의 고용량화를 이룩할 신기술이 있기 때문입니다.



(출처: ASTC/씨게이트)


 현재 HDD 용량을 크게 증가시킨 기술은 수직자기기록(PMR)입니다. 이를 약간 개선한 SMR 및 헬륨 충전 기술을 통해서 이제는 10TB HDD가 등장했지만 빠른 속도로 따라오는 SSD와의 경쟁을 위해서는 새로운 기술이 필요합니다.


 HDD 진영이 기대하는 기술은 열보조 자기기록 (HAMR: Heat Assisted Magnetic Recording) 기술입니다. 이 기술을 통해서 제곱인치 당 기록 밀도는 1.2~5.0Tb까지 증가할 수 있습니다. 이는 현재 기술보다 최대 5배 수준의 기록밀도 달성이 가능하다는 이야기입니다.


 하지만 HAMR은 당장에는 상용화가 쉽지 않아서 2017년에 초기 제품이 등장하거나 혹은 2018년까지 양산이 미뤄질 수 있다고 합니다. 그러나 동시에 이차원 자기기록(TDMR, Two Dimensional Magnetic Recording) 기술이 등장해 기록밀도를 더 높일 수 있을 것이라고 하네요. 다만 5-10% 정도로 밀도 증가는 미미합니다.


(출처: 씨게이트)
 씨게이트의 HAMR 기술은 810nm 파장의 레이저를 20mW의 출력으로 발사해 450°C 고온으로 가열해 정보를 기록합니다. 다만 현재까지는 2017-2018년 사이 언제에 상용화가 될지 판단하기 이른 상태입니다. 아무튼 상용화가 되면 20-30TB 급 HDD는 물론 최대 50TB급 HDD의 개발도 불가능하지는 않을 것으로 보입니다.

 
 그 이후에도 HDD는 ​Bit Patterned Media Recording (BPMR), Heated Dot Magnetic Recording (HDMR), Microwave-Assisted Magnetic Recording (MAMR) 같은 새로운 기술을 통해서 2035년까지 지속적으로 발전을 한다는 게 씨게이트의 설명입니다. 아마도 언젠가는 수백 TB급 HDD도 가능할지 모릅니다.


 하지만 역시 문제는 비휘발성 메모리 기술 역시 발전을 멈추지 않는다는 것이겠죠. 수년 내로 HDD가 사라지지는 않겠지만, 5년 ~ 10년 뒤에도 지금같은 위상을 유지할 수 있을지는 미지수입니다.


 참고





댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다...

9000년 전 소녀의 모습을 복원하다.

( The final reconstruction. Credit: Oscar Nilsson )  그리스 아테나 대학과 스웨덴 연구자들이 1993년 발견된 선사 시대 소녀의 모습을 마치 살아있는 것처럼 복원하는데 성공했습니다. 이 유골은 그리스의 테살리아 지역의 테오페트라 동굴 ( Theopetra Cave )에서 발견된 것으로 연대는 9000년 전으로 추정됩니다. 유골의 주인공은 15-18세 사이의 소녀로 정확한 사인은 알 수 없으나 괴혈병, 빈혈, 관절 질환을 앓고 있었던 것으로 확인되었습니다.   이 소녀가 살았던 시기는 유럽 지역에서 수렵 채집인이 초기 농경으로 이전하는 시기였습니다. 다른 시기와 마찬가지로 이 시기의 사람들도 젊은 시절에 다양한 질환에 시달렸을 것이며 평균 수명 역시 매우 짧았을 것입니다. 비록 젊은 나이에 죽기는 했지만, 당시에는 이런 경우가 드물지 않았을 것이라는 이야기죠.   아무튼 문명의 새벽에 해당하는 시점에 살았기 때문에 이 소녀는 Dawn (그리스어로는  Avgi)라고 이름지어졌다고 합니다. 연구팀은 유골에 대한 상세한 스캔과 3D 프린팅 기술을 적용해서 살아있을 당시의 모습을 매우 현실적으로 복원했습니다. 그리고 그 결과 나타난 모습은.... 당시의 거친 환경을 보여주는 듯 합니다. 긴 턱은 당시를 살았던 사람이 대부분 그랬듯이 질긴 먹이를 오래 씹기 위한 것으로 보입니다.   강하고 억센 10대 소녀(?)의 모습은 당시 살아남기 위해서는 강해야 했다는 점을 말해주는 듯 합니다. 이렇게 억세보이는 주인공이라도 당시에는 전염병이나 혹은 기아에서 자유롭지는 못했기 때문에 결국 평균 수명은 길지 못했겠죠. 외모 만으로 평가해서는 안되겠지만, 당시의 거친 시대상을 보여주는 듯 해 흥미롭습니다.   참고  https://phys.org/news/2018-01-te...

근육 떨림을 막는 전자 임플란트

  (Three of the muscle-stimulating implanted electrodes – these ones are attached to silicone tubes which were used to more easily extract them from test subjects' bodies once the study was completed. Credit: Fraunhofer IBMT) ​ (A diagram of the system. Credit: Equinor Open Data License) ​ ​ ​ 근육이 자기 의지와 관계 없이 갑자기 수축하거나 떨림 (tremor, 진전) 증상이 나타나는 경우 현재까지는 완전히 막을 수 있는 치료제가 없습니다. 하지만 스페인 국립 연구 위원회(Spanish National Research Council)가 이끄는 독일, 아이슬란드, 영국, 미국 의 과학자들은 이 문제에 대한 좀 더 근본적인 해결책을 내놓았습니다. ​ ​ 이 연구는 국제 과학 컨소시엄인 EXTEND 프로젝트의 일부로 신체에 신경 신호를 조절하는 전극을 넣어 움직임을 조절하는 것이 목표입니다. ​ ​ 방법은 간단합니다. 생체 적합 물질로 만든 길이 3cm, 지름 1mm 크기의 백금-이리듐/실리콘 (platinum-iridium/silicone) 임플란트를 근육 속에 넣습니다. 각 임플란트엔 센서와 액추에이터 역할을 할 두 개의 전극이 있습니다. 외부에 있는 전극은 전원을 공급하는 기능도 합니다. ​ ​ 이 임플란트는 근육의 떨림이나 이상 동작을 파악하면 신호를 보내 움직임을 멈추게 합니다. 초기 임상 실험 결과는 1-2시간 정도 작동으로도 더 긴 시간동안 떨림 증상을 막을 수 있는 것으로 나타났습니다. ​ ​ 실제 임상에서 사용하게 될지는 지금 단계에서 말하기 이르지만, 먼가 사이버펑크의 세계가 좀 더 가까워진 것 같은 전자 임플란트 같습니다. ​ ​ 참고 ​ ​ https://newatlas.com/health-wel...