기본 콘텐츠로 건너뛰기

스냅드래곤 865G와 765G를 공개한 퀄컴




(출처: 퀄컴) 


 퀄컴이 차기 플래그쉽 모바일 AP인 스냅드래곤 865를 발표했습니다. 스냅드래곤 865에서 먼저 눈길을 끄는 부분은 커스텀 디자인의 Kyro 대신 ARM 레퍼런스인 Cortex A77을 사용했다는 것입니다. 앞으로는 독자 디자인의 CPU를 사용하지 않겠다는 의미인지 아니면 일시적으로 레퍼런스 디자인을 사용한 것인지는 알 수 없지만, 최근 삼성 역시 자체 CPU  개발을 포기했다는 소식과 맞물려 흥미로운 이야기가 아닐 수 없습니다. 아마도 커스텀 디자인의 CPU가 추가적인 개발비용을 감수할 만큼 성능을 보여주지 않은 것으로 생각됩니다. 


 스냅드래곤 865의 CPU 구성은 1:3:4로 저전력 - 고성능 상황에 더 세분화해 작동할 수 있습니다. 요즘 나오는 고성능 AP에서 보는 흔한 구성입니다. GPU는 자체 디자인인 Adreno 650으로 전 세대 대비 25% 이상 성능 향상이 있습니다. 인공지능 관련 연산은 15TOPS로 크게 증가되어 855 대비 2배, 845 대비 5배 증가했습니다. 동영상 처리 능력 역시 4K 120 프레임 영상 처리는 물론 8K 30프레임 지원도 가능합니다. 게이밍에서 중요한 144Hz 리프레쉬 레이트 역시 지원 가능합니다. 


SoC
Snapdragon 865
Snapdragon 855
CPU
1x Cortex A77
@ 2.84GHz 1x512KB pL2

3x Cortex A77
@ 2.42GHz 3x256KB pL2

4x Cortex A55
@ 1.80GHz 4x128KB pL2

4MB sL3 @ ?MHz
1x Kryo 485 Gold (A76 derivative)
@ 2.84GHz 1x512KB pL2

3x Kryo 485 Gold (A76 derivative)
@ 2.42GHz 3x256KB pL2

4x Kryo 485 Silver (A55 derivative)
@ 1.80GHz 4x128KB pL2

2MB sL3 @ 1612MHz
GPU
Adreno 650 @ ? MHz

+25% perf
+50% ALUs
+50% pixel/clock
+0% texels/clock
Adreno 640 @ 585 MHz




 
DSP / NPU
Hexagon 698

15 TOPS AI
(Total CPU+GPU+HVX+Tensor)
Hexagon 690

7 TOPS AI
(Total CPU+GPU+HVX+Tensor)
Memory
Controller
4x 16-bit CH

@ 2133MHz LPDDR4X / 33.4GB/s
or
@ 2750MHz LPDDR5  /  44.0GB/s

3MB system level cache
4x 16-bit CH

@ 1866MHz LPDDR4X 29.9GB/s



3MB system level cache
ISP/Camera
Dual 14-bit Spectra 480 ISP

1x 200MP or 64MP with ZSL
or
2x 25MP with ZSL

4K video & 64MP burst capture
Dual 14-bit Spectra 380 ISP

1x 48MP or 2x 22MP



 
Encode/
Decode
8K30 / 4K120 10-bit H.265

Dolby Vision, HDR10+, HDR10, HLG

720p960 infinite recording
4K60 10-bit H.265

HDR10, HDR10+, HLG

720p480
Integrated 
  Modem
none
(Paired with 
external X55 only)

(LTE Category 24/22)
DL = 2500 Mbps
7x20MHz CA, 1024-QAM
UL = 316 Mbps
3x20MHz CA, 256-QAM

(5G NR Sub-6 + mmWave)
DL = 7000 Mbps
UL = 3000 Mbps
Snapdragon X24 LTE
(Category 20)

DL = 2000Mbps
7x20MHz CA, 256-QAM, 4x4

UL = 316Mbps
3x20MHz CA, 256-QAM
Mfc. Process
TSMC
7nm (N7P)
TSMC
7nm (N7)

(스냅드래곤 855/865 스펙 비교. 출처; 아난드텍) 


 한 가지 더 눈길이 가는 부분은 LPDDR5 지원입니다. 2020년에는 LPDDR5가 본격적으로 스마트폰에 탑재될 것으로 보입니다. 이제는 PC 부분보다 더 빠르게 모바일에 최신 메모리가 적용되어도 이상하지 않은 시대인 것 같습니다. DDR5의 PC 적용은 2021-2022년 사이가 될 것 같습니다. 


 퀄컴은 중급기 가운데서도 하이엔드급에 가까운 스마트폰을 위해 스냅드래곤 765/765G도 같이 공개했습니다. 스냅드래곤 765에는 Kryo와 LPDDR4X가 여전히 사용됩니다. 730 대비 약간 성능이 향상되고 5G 지원 모델이 추가되면서 중고급기 시장에서 주로 사용될 것으로 보입니다. 


SoC
Snapdragon 765
Snapdragon 765G
Snapdragon 730
CPU
1x Kryo 475 Prime (CA76)
@ 2.3GHz (non-G)
@ 2.4GHz (765G)
1x Kryo 475 Gold (CA76)
@ 2.2GHz
6x Kryo 475 Silver (CA55)
@ 1.8GHz
2x Kryo 470 Gold (CA76)
@ 2.2GHz


6x Kryo 470 Silver (CA55)
@ 1.8GHz
GPU
Adreno 620
+20% perf (non-G)
+38% perf (765G)
Adreno 618
DSP / NPU
Hexagon 696
HVX + Tensor

5.4TOPS AI
(Total CPU+GPU+HVX+Tensor)
Hexagon 688
HVX + Tensor
Memory
Controller
2x 16-bit CH

@ 2133MHz LPDDR4X / 17.0GB/s
2x 16-bit CH

@ 1866MHz LPDDR4X 14.9GB/s
ISP/Camera
Dual 14-bit Spectra 355 ISP

1x 192MP or 36MP with ZSL
or
2x 22MP with ZSL
Dual Spectra 350 ISP

1x 36MP with ZSL
or
2x 22MP with ZSL
Encode/
Decode
2160p30, 1080p120
H.264 & H.265

10-bit HDR pipelines
Integrated Modem
Snapdragon X52 Integrated

(LTE Category 24/22)
DL = 1200 Mbps
4x20MHz CA, 256-QAM
UL = 210 Mbps
2x20MHz CA, 256-QAM

(5G NR Sub-6 4x4 100MHz
+ mmWave 2x2 400MHz)
DL = 3700 Mbps
UL = 1600 Mbps
Snapdragon X15 LTE

(Category 15/13)
DL = 800Mbps
3x20MHz CA, 256-QAM
UL = 150Mbps
2x20MHz CA, 64-QAM
Mfc. Process
Samsung
7nm EUV (7LPP)
Samsung
8nm (8LPP)

(스냅드래곤 765/730 스펙 비교. 출처; 아난드텍) 


 아직 5G의 성능을 느끼기에는 관련 인프라가 부족하지만, LTE와 마찬가지로 5G 인프라가 구축되는 건 시간 문제이기 때문에 결국 대세가 되는 건 시간 문제입니다. 내년을 기점으로 애플, 삼성, LG 모두 5G가 주력이 될 것이고 보급형까지 5G가 확장될 것으로 예상됩니다. 


 참고 




댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다...

9000년 전 소녀의 모습을 복원하다.

( The final reconstruction. Credit: Oscar Nilsson )  그리스 아테나 대학과 스웨덴 연구자들이 1993년 발견된 선사 시대 소녀의 모습을 마치 살아있는 것처럼 복원하는데 성공했습니다. 이 유골은 그리스의 테살리아 지역의 테오페트라 동굴 ( Theopetra Cave )에서 발견된 것으로 연대는 9000년 전으로 추정됩니다. 유골의 주인공은 15-18세 사이의 소녀로 정확한 사인은 알 수 없으나 괴혈병, 빈혈, 관절 질환을 앓고 있었던 것으로 확인되었습니다.   이 소녀가 살았던 시기는 유럽 지역에서 수렵 채집인이 초기 농경으로 이전하는 시기였습니다. 다른 시기와 마찬가지로 이 시기의 사람들도 젊은 시절에 다양한 질환에 시달렸을 것이며 평균 수명 역시 매우 짧았을 것입니다. 비록 젊은 나이에 죽기는 했지만, 당시에는 이런 경우가 드물지 않았을 것이라는 이야기죠.   아무튼 문명의 새벽에 해당하는 시점에 살았기 때문에 이 소녀는 Dawn (그리스어로는  Avgi)라고 이름지어졌다고 합니다. 연구팀은 유골에 대한 상세한 스캔과 3D 프린팅 기술을 적용해서 살아있을 당시의 모습을 매우 현실적으로 복원했습니다. 그리고 그 결과 나타난 모습은.... 당시의 거친 환경을 보여주는 듯 합니다. 긴 턱은 당시를 살았던 사람이 대부분 그랬듯이 질긴 먹이를 오래 씹기 위한 것으로 보입니다.   강하고 억센 10대 소녀(?)의 모습은 당시 살아남기 위해서는 강해야 했다는 점을 말해주는 듯 합니다. 이렇게 억세보이는 주인공이라도 당시에는 전염병이나 혹은 기아에서 자유롭지는 못했기 때문에 결국 평균 수명은 길지 못했겠죠. 외모 만으로 평가해서는 안되겠지만, 당시의 거친 시대상을 보여주는 듯 해 흥미롭습니다.   참고  https://phys.org/news/2018-01-te...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...