기본 콘텐츠로 건너뛰기

밴 앨런대에 세번 째 벨트가 있다 ?





 2013 년 2월 28일 (현지 시각) 나사는 Van Allen Probes mission 의 관측 결과 지금까지 2개의 거대한 벨트로 구성되었더고 생각해온 밴 앨런 대 (Van Allen Belt) 의 세번째 벨트가 더 외측에 존재하는 것 같다고 발표했습니다. 1958 년 초창기 우주 탐사를 진행한 익스플로러 1호와 3호 (Explorer 1, 3)의 관측 결과 밝혀진 이 고에너지 입자의 벨트에 새로운 비밀이 밝혀진 셈입니다. 



 밴 앨런대의 기원은 태양과 우주에서 날아오는 고에너지 입자들이 지구의 자기장에 잡혀서 벨트 모양으로 존재하는 것으로 생각됩니다. 실제 밴 앨런대는 크기가 변화하는 두개의 도넛 모양 층으로 지구를 둘러싸고 있으며 각각 inner belt 와 outer belt 로 불리고 있습니다.


 inner belt 는 수백 keV 급의 에너지를 가진 전자와 100 MeV 급 에너지를 가진 고에너지 양성자들이존재하는 공간이며 보통은 지표에서 1000 km 정도에서 시작되지만 특수한 상황에서는 그보다 더 아래서 부터 존재할 수 있습니다. outer belt 는 지표에서 약 13000 - 60000 km 정도 떨어진 지역으로 최대 지구 반지름의 10 배까지 커질 수 있지만 대개는 4-5 배 정도입니다. 여기에는 0.1 - 10 MeV 급의 고에너지 전자들이 지구 자기장에 잡혀 도넛 모양으로 존재합니다. 



(밴 앨런 대의 간략화한 모습  Source : NASA  )    

 밴 앨런 대에 존재하는 고에너지 입자대는 다른 이야기로 하면 방사선대라고 할 수 있으며 실제로 인공 위성등에 영향을 줄 수 있기 때문에 인공 위성을 발사하기 전에 이를 고려해야 합니다. 저지구 궤도 (LEO) 를 도는 경우에는 밴 앨런대 안쪽이기 때문에 지구 자기장에 의해 고에너지 입자의 폭격에서 어느 정도 보호되지만 밴 앨런대 안쪽에서는 오히려 고에너지 입자의 농도가 높아져 기기등에 이상을 일으킬 수 있습니다. 또 생명체에도 유해한 영향을 미칠 수가 있습니다. 


 나사는 두개의 인공 위성으로 밴 앨런대를 탐사하는 Van Allen Probe mission 을 2012 년 8월 30일 부터 진행하고 있습니다. 성공적으로 발사된 밴 앨런 탐사 위성은 2년간의 임무를 진행할 계획인데 처음부터 꽤 놀라운 소식을 전해왔습니다. 그것은 밴 앨런대 외측에 약하지만 3 번째 방사선대가 있다는 것입니다.



(이번에 발견된 3 번째 밴 앨런대. 방사선 대는 노란색이고 그 사이 공간은 녹색으로 표시. 제일 밖에 3번째 방사선대가 존재 Two giant swaths of radiation, known as the Van Allen Belts, surrounding Earth were discovered in 1958. In 2012, observations from the Van Allen Probes showed that a third belt can sometimes appear. The radiation is shown here in yellow, with green representing the spaces between the belts. (Credit: NASA/Van Allen Probes/Goddard Space Flight Center) ) 





 나사의 과학자들은 이런 현상을 어느 정도 이론적으로 설명할 수 있다고 생각하고 있습니다. 더 흥미로운 부분은 이 세 번째 벨트와 태양과의 관계입니다. 2012 년 8월 31일 태양에서 강한 태양 폭발이 관측되었고 고에너지 입자들이 지구를 향해 발사되었습니다. 그 후 수일 만에 세번째 밴 앨런대가 모습을 드러냈고 4 주 정도 지속된 후 사라졌습니다. 


 이것은 밴 앨런대가 태양이나 기타 우주에서 오는 고에너지 입자에 의해 역동적으로 변하는 구조물이라는 사실을 보여주는 사례라고 하겠습니다. 밴 앨런대가 처음 발견된지 이미 50 년이 넘었지만 아직도 우리가 모르고 있는 미스테리들이 다수 존재한다는 점은 흥미롭습니다. 단순한 흥미를 넘어 사실 밴 앨런 대에 대한 연구는 위성의 안전성이나 우주 여행에서 안전 문제등을 감안할 때 매우 실질적으로 조사할 필요가 있는 문제라고 하겠습니다. 


 아무튼 이번 발견으로 지구 과학 교과서에 새로운 내용이 추가되야 할 것 같습니다. 



 참고 



댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다...

9000년 전 소녀의 모습을 복원하다.

( The final reconstruction. Credit: Oscar Nilsson )  그리스 아테나 대학과 스웨덴 연구자들이 1993년 발견된 선사 시대 소녀의 모습을 마치 살아있는 것처럼 복원하는데 성공했습니다. 이 유골은 그리스의 테살리아 지역의 테오페트라 동굴 ( Theopetra Cave )에서 발견된 것으로 연대는 9000년 전으로 추정됩니다. 유골의 주인공은 15-18세 사이의 소녀로 정확한 사인은 알 수 없으나 괴혈병, 빈혈, 관절 질환을 앓고 있었던 것으로 확인되었습니다.   이 소녀가 살았던 시기는 유럽 지역에서 수렵 채집인이 초기 농경으로 이전하는 시기였습니다. 다른 시기와 마찬가지로 이 시기의 사람들도 젊은 시절에 다양한 질환에 시달렸을 것이며 평균 수명 역시 매우 짧았을 것입니다. 비록 젊은 나이에 죽기는 했지만, 당시에는 이런 경우가 드물지 않았을 것이라는 이야기죠.   아무튼 문명의 새벽에 해당하는 시점에 살았기 때문에 이 소녀는 Dawn (그리스어로는  Avgi)라고 이름지어졌다고 합니다. 연구팀은 유골에 대한 상세한 스캔과 3D 프린팅 기술을 적용해서 살아있을 당시의 모습을 매우 현실적으로 복원했습니다. 그리고 그 결과 나타난 모습은.... 당시의 거친 환경을 보여주는 듯 합니다. 긴 턱은 당시를 살았던 사람이 대부분 그랬듯이 질긴 먹이를 오래 씹기 위한 것으로 보입니다.   강하고 억센 10대 소녀(?)의 모습은 당시 살아남기 위해서는 강해야 했다는 점을 말해주는 듯 합니다. 이렇게 억세보이는 주인공이라도 당시에는 전염병이나 혹은 기아에서 자유롭지는 못했기 때문에 결국 평균 수명은 길지 못했겠죠. 외모 만으로 평가해서는 안되겠지만, 당시의 거친 시대상을 보여주는 듯 해 흥미롭습니다.   참고  https://phys.org/news/2018-01-te...

근육 떨림을 막는 전자 임플란트

  (Three of the muscle-stimulating implanted electrodes – these ones are attached to silicone tubes which were used to more easily extract them from test subjects' bodies once the study was completed. Credit: Fraunhofer IBMT) ​ (A diagram of the system. Credit: Equinor Open Data License) ​ ​ ​ 근육이 자기 의지와 관계 없이 갑자기 수축하거나 떨림 (tremor, 진전) 증상이 나타나는 경우 현재까지는 완전히 막을 수 있는 치료제가 없습니다. 하지만 스페인 국립 연구 위원회(Spanish National Research Council)가 이끄는 독일, 아이슬란드, 영국, 미국 의 과학자들은 이 문제에 대한 좀 더 근본적인 해결책을 내놓았습니다. ​ ​ 이 연구는 국제 과학 컨소시엄인 EXTEND 프로젝트의 일부로 신체에 신경 신호를 조절하는 전극을 넣어 움직임을 조절하는 것이 목표입니다. ​ ​ 방법은 간단합니다. 생체 적합 물질로 만든 길이 3cm, 지름 1mm 크기의 백금-이리듐/실리콘 (platinum-iridium/silicone) 임플란트를 근육 속에 넣습니다. 각 임플란트엔 센서와 액추에이터 역할을 할 두 개의 전극이 있습니다. 외부에 있는 전극은 전원을 공급하는 기능도 합니다. ​ ​ 이 임플란트는 근육의 떨림이나 이상 동작을 파악하면 신호를 보내 움직임을 멈추게 합니다. 초기 임상 실험 결과는 1-2시간 정도 작동으로도 더 긴 시간동안 떨림 증상을 막을 수 있는 것으로 나타났습니다. ​ ​ 실제 임상에서 사용하게 될지는 지금 단계에서 말하기 이르지만, 먼가 사이버펑크의 세계가 좀 더 가까워진 것 같은 전자 임플란트 같습니다. ​ ​ 참고 ​ ​ https://newatlas.com/health-wel...