기본 콘텐츠로 건너뛰기

한층 더 존재 가능성이 높아진 표준 모델 힉스 입자




 CERN 이 3월 14일 보도 자료를 내고 작년에 발견된 125 GeV particle 이 실제 힉스 입자일 가능성이 한 단계 더 높아졌다고 언급했습니다. 다만 아직 과학계에서 완전한 의견의 일치를 볼 정도로 증거를 모으지 못했기 때문에 이에 대해서 매우 조심스럽게 언급하고 있습니다. (아래는 보도 자료 전문)


 At the Moriond Conference today, the ATLAS and CMS collaborations at the Large Hadron Collider (LHC) presented preliminary new results that further elucidate the particle discovered last year. Having analysed two and a half times more data than was available for the discovery announcement in July, they find that the new particle is looking more and more like a Higgs boson, the particle linked to the mechanism that gives mass to elementary particles. It remains an open question, however, whether this is the Higgs boson of the Standard Model of particle physics, or possibly the lightest of several bosons predicted in some theories that go beyond the Standard Model. Finding the answer to this question will take time.

Whether or not it is a Higgs boson is demonstrated by how it interacts with other particles, and its quantum properties. For example, a Higgs boson is postulated to have no spin, and in the Standard Model its parity – a measure of how its mirror image behaves – should be positive. CMS and ATLAS have compared a number of options for the spin-parity of this particle, and these all prefer no spin and positive parity. This, coupled with the measured interactions of the new particle with other particles, strongly indicates that it is a Higgs boson.

“The preliminary results with the full 2012 data set are magnificent and to me it is clear that we are dealing with a Higgs boson though we still have a long way to go to know what kind of Higgs boson it is,” says CMS spokesperson Joe Incandela.

"The beautiful new results represent a huge effort by many dedicated people. They point to the new particle having the spin-parity of a Higgs boson as in the Standard Model. We are now well started on the measurement programme in the Higgs sector," says ATLAS spokesperson Dave Charlton.

To determine if this is the Standard Model Higgs boson, the collaborations have, for example, to measure precisely the rate at which the boson decays into other particles and compare the results to the predictions. The detection of the boson is a very rare event – it takes around 1 trillion (10^12) proton-proton collisions for each observed event. To characterize all of the decay modes will require much more data from the LHC.



 이 내용을 보게 되면 결국 새롭게 발견된 입자가 힉스 입자가 가지고 있는 특징 - 이미 검증된 질량 뿐 아니라 스핀 0 에 parity + 인 입자 - 에 보다 근접한 것으로 보여 힉스 입자일 가능성이 더 커졌습니다. 참고로 2012 년 7월에 발표된 내용은 2 차례의 실험 결과에서 125 GeV 부근에서 새로운 입자를 찾았다는 내용이며 이 새 입자의 질량이 125 GeV 가 넘지 않는다는 것은 이제 확신할 정도의 수준에 올라섰다고 CERN 측은 밝혔습니다.


(과거 힉스 보존에 대한 포스트 참조  :  http://blog.naver.com/jjy0501/100161669649 ) 


 거대 강입자 가속기 (LHC) 의 ATLAS 에서 측정한 새 보존 (boson) 의 질량은 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV/c2 이고 (5.9 - sigma), CMS 에서 측정된 값은 125.3 ± 0.4 (stat) ± 0.5 (sys) GeV/c2 (5 - sigma) 이므로 질량에 대해서는 어느 정도 의견의 일치를 본 셈입니다. 그리고 스핀 및 parity 에 있어서도 이제는 힉스 보존에 적합한 특징이 관찰되었습니다. 하지만 현 시점에서 국내 언론 보도 - 즉 힉스 입자의 발견이 확정되었다는 기사들 - 과는 다르게 아직도 검증 과정은 남아있습니다. 이 125 GeV 입자를 힉스 입자라고 부르기에는 몇가지 남은 과제가 있다는 것이죠. 




(2013년 2월까지 125 GeV 입자의 검증 상태   Source : Wiki) 



 힉스 입자는 사실 어딘가 숨어 있는 드문 입자가 아니라 표준 모델에 따르면 우주에 꽉차 있는 입자입니다. 우리 주변에 항상 존재하며 다른 입자와의 상호 작용을 통해 질량을 부여하므로 힉스 입자 하나만을 꺼내서 확인하기란 사실상 매우 어려운 일입니다. 이를 위해선 LHC 같은 거대 입자 가속기를 이용해서 엄청난 에너지를 주어 힉스 입자가 튀어나오게 하는 수 밖에 없습니다.


 과학자들은 이렇게 튀어 나온 힉스 입자가 표준 모델 (Standard Model) 에 따라 어떻게 행동을 보일 것인지 예측하고 있고 작년에 발견한 125 GeV 입자의 특징이 이에 맞는 지 계속 검토하고 있습니다. 지금 나온 보도 자료는 일부가 그 특징에 맞다는 이야기이지 모든 검증이 다 마무리 되었다는 이야기는 아니라고 하겠습니다. 


 이를 테면 이렇게 진공 상태에서 내몰린 힉스 입자는 몇가지 패턴에 따라 다른 입자로 붕괴될 것입니다. 이 새로운 입자이 붕괴 패턴이 실제 예상한 것과 같은 지 검증하는 작업은 아직도 진행 중에 있습니다. 여기까지 검증 단계가 끝나면 새로운 입자가 힉스 보존일 것이라는 의견이 어느 정도 과학자들 사이에서 확고한 지지를 얻을 것으로 보이지만 아직은 그 단계는 아니기에 CERN 의 보도 자료 역시 조심스러운 상태입니다. 적어도 뉴스 보도 처럼 과학자들이 지금 힉스 입자 발견에 감동해서 눈물을 흘릴 것 같은 단계는 아니라는 것이죠.  


 한가지 재미있는 부분은 이 입자가 힉스 입자는 맞는 데 표준 모델에서 예측하는 힉스 입자 (Standard Model Higgs boson) 는 아닐 가능성입니다. 일단 지금까지의 결과는 그렇지는 않은 것으로 보입니다. 표준 모델의 예측과 힉스 입자의 실제 모습이 다르면 표준 모델이 수정될 수도 있기 때문에 이는 중대한 이야기라고 하겠습니다. 아무튼 2013 년 3월에 과학자들이 이 입자가 더 힉스 처럼 (그것도 표준 모델에서 예상한 그대로의) 보인다는 데는 의견을 모은 것 같습니다. ( 'the new particle is looking more and more like a Higgs boson,' )  


 하지만 보도 자료에서도 언급했듯이 아직은 더 데이터 수집/분석과 연구가 필요합니다. 다만 LHC 의 업그레이드로 인해 한동안은 연구가 중단될 예정입니다. 현재 LHC 는 작동이 중단된 상태라 2015 년 실험이 재개될 수 있을 것으로 보입니다. 이 때가 되면 LHC 는 빔당 4 TeV 가 아니라 6.5 TeV 는 낼 수 있을 것으로 보이며 지금까지 도달한 적이 없던 최고 에너지인 13 - 14 TeV 를 달성할 수 있을 것 같습니다. 이렇게 되면 일부 이론에서 예측된 다양한 힉스 입자의 존재가 밝혀질지도 모릅니다. 아니면 지금까지 생각치 못한 특이한 입자가 생길 수도 있겠죠. 2015 년 이후에 무엇이 발견될지는 신만이 아는 일일 것입니다. 


 참고  




댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다. 잘 쓰지도 않을 방법을 열심히 공부하는 것은 아무래도 효율

R 스튜디오 설치 및 업데이트

 R을 설치한 후 기본으로 제공되는 R 콘솔창에서 코드를 입력해 작업을 수행할 수도 있지만, 보통은 그렇게 하기 보다는 가장 널리 사용되는 R 개발환경인 R 스튜디오가 널리 사용됩니다. 오픈 소스 무료 버전의 R 스튜디오는 누구나 설치가 가능하며 편리한 작업 환경을 제공하기 때문에 R을 위한 IDE에서 가장 널리 사용되어 있습니다. 아래 링크에서 다운로드 받습니다.    https://www.rstudio.com/  다운로드 R 이나 혹은 Powerful IDE for R로 들어가 일반 사용자 버전을 받습니다. 오픈 소스 버전과 상업용 버전, 그리고 데스크탑 버전과 서버 버전이 있는데, 일반적으로는 오픈 소스 버전에 데스크탑 버전을 다운로드 받습니다. 상업 버전의 경우 데스크탑 버전의 경우 년간 995달러, 서버 버전은 9995달러를 받고 여러 가지 기술 지원 및 자문을 해주는 기능이 있습니다.   데스크탑 버전을 설치하는 과정은 매우 쉽기 때문에 별도의 설명이 필요하지 않을 것 같습니다. 인스톨은 윈도우, 맥, 리눅스 (우분투/페도라)에 따라 설치 파일이 나뉘지만 설치가 어렵지는 않을 것입니다. 한 가지 주의할 점이라면 R은 사전에 반드시 따로 설치해야 한다는 점입니다. R 스튜디오만 단독 설치하면 아무것도 할 수 없습니다. 뭐 당연한 이야기죠.   설치된 R 스튜디오는 자동으로 업데이틀 체크하지 않습니다. 따라서 업데이트를 위해서는 R 스튜디오에서 Help 로 들어가 업데이트를 확인해야 합니다.     만약 업데이트 할 내용이 없다면 최신 버전이라고 알려줄 것이고 업데이트가 있다면 업데이트를 진행할 수 있도록 도와주게 됩니다. R의 업데이트와 R 스튜디오의 업데이트는 모두 개별적이며 앞서 설명했듯이 R 업데이트는 사실 기존 버전과 병행해서 새로운 버전을 새롭게 설치하는 것입니다. R 스튜디오는 실제로 업데이트가 이뤄지기 때문에 구버전을 지워줄 필요는

R 패키지 설치 및 업데이트 오류 (1)

 R 패키지를 설치하거나 업데이트 하다보면 여러 가지 문제가 생기는 경우들이 있습니다. 이 경우 아예 R을 재설치하는 것도 방법이지만, 어떤 경우에는 이렇게해도 해결이 안되고 계속해서 사용자는 괴롭히는 경우도 있습니다. 이런 경우 중 하나를 소개합니다.  새로운 패키지를 설치, 혹은 업데이트 하는 과정에서 같이 설치하는 패키지 중 하나가 설치가 되지 않는다는 메세지가 계속 나왔는데, 사실은 백신 프로그램 때문이었던 경우입니다.   dplyr 패키지를 업데이트 하려고 했는데, 제대로 되지 않아 다시 설치를 진행했습니다. 그런데 일부 패키지가 제대로 설치되지 않는다는 메세지가 나왔습니다.  > install.packages("dplyr") Error in install.packages : Updating loaded packages > install.packages("dplyr") Installing package into ‘C:/Users/jjy05_000/Documents/R/win-library/3.4’ (as ‘lib’ is unspecified) also installing the dependencies ‘bindr’, ‘bindrcpp’, ‘Rcpp’, ‘rlang’, ‘plogr’ trying URL ' https://cran.rstudio.com/bin/windows/contrib/3.4/bindr_0.1.1.zip ' Content type 'application/zip' length 15285 bytes (14 KB) downloaded 14 KB trying URL ' https://cran.rstudio.com/bin/windows/contrib/3.4/bindrcpp_0.2.2.zip ' Content type 'application/zip' length 620344 b