기본 콘텐츠로 건너뛰기

우주이야기 58 - 별의 최후 5





  극초신성과 감마선 버스트



 과학자들은 1960년대 핵실험의 증거를 찾아내기 위한 관측에서 감마 레이 버스트라는 엄청난 폭발이 우주 저편에서 발생한다는 사실을 알아냈다. 이것을 밝힌 것은 바로 미국의 관측위성 벨라였는데 감마선은 대부분 대기중에서 흡수되기 때문이다. 사실 이 위성이 하는 일은 소련이 비밀리에 시행하는 핵실험을 관측하기 위해서였다. 그러나 이 위성은 우연히 강력한 감마선을 목격하게 된다. 


 1990년대 이후 과학자들은 이 감마선 버스트의 정체에 한발 더 다가갔다. 1997년 이탈리아의 관측위성 베포 삭스 (Beppo SAX)는 감마선 버스트의 위치를 알아낼 수 있는 장치를 내장하고 있었다. 1997년 발생한 감마레이 버스트  GRB 970508 는 베포삭스에 의해 위치가 알려졌고 지상의 망원경등을 동원하여 그 자세한 관측이 이루어졌다. 그 결과 적어도 60억 광년 떨어진 지점에서 GRB 970508 이 있음이 분명해졌다. 이렇게 먼 거리에서도 관측이 가능한 감마선이라면 본래의 에너지가 엄청나다는 의미였다. 


 그 이후 발사된 관측 위성 헤티 2 (HETE - 2) 는 2003년 더 결정적인 증거를 찾았다. 과학자들은 감마선 버스트가 긴것과 짧은 것 두가지 종류가 있다는 것을 알고 있었다. 긴 감마선 버스트는 약 2초에서 길게는 수백초였고 짧은 것은 2초 이하이며 대개 1초 이내로 사라져 버린다. 헤티 2 가 목격한 긴 감마선 버스트를 관측한 결과 이것이 초신성 폭발과 유사하다는 것을 알 수 있었다. 

 이후 새롭게 발사된 스위프트 관측 위성 및 지상의 감마선 버스트 관측 네트워크의 협력으로 우리는 긴 감마선 버스트의 원인이 아마도 초신성 중에서도 아주 강력한 극초신성 폭발에 의한 것이라는 증거를 얻었다. 


(감마레이 버스트의 아티스트 컨셉   CCL 에 따라 복사 허용 저자 표시   저자  ESO. Original uploader was Lars Lindberg Christensen at en.wikipedia )



 이와 같은 극초신성은 적어도 태양 질량의 25배 정도 되는 항성, 더 나아가서는 태양 질량의 수백배에 달해 에딩턴 한계 (태양 질량의 120배 정도로 이 이상이면 항성이 안정적으로 유지되기 힘들다) 를 넘는 불안정한 거성들에서 볼 수 있다고 생각된다. 


 그 에너지 양은 적어도 1048 J 에 달해서 일반적인 Type II  초신성의 100배에 이르기 때문에 극초신성이라는 명칭이 적합할 것이다. 이와같은 극 초신성 폭발을 일으키는 거대한 천체들은 극대거성 (Hypergiant) 이라는 명칭을 상용하기도 한다. 


 이들의 초신성 폭발 메카니즘은 일반적인 초신성의 폭발 메카니즘과는 많이 다르다고 생각된다. 이들은 내부에 철의 핵이 생겨 중력 붕괴가 일어나면 엄청난 중력 때문에 바로 블랙홀이 생긴다고 여겨진다. 이렇게 생성된 블랙홀은 폭발을 일으키기 보다는 별의 중심에서 부터 별을 먹어 치우기 시작한다. 


(극초신성의 탄생. 말기에 별 내부에서 바로 블랙홀이 발생한다  The copyright holder of this file, National Science Foundation, allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted. )


 블랙홀에 대해서는 나중에 별도로 다시 설명하겠지만 물질이 블랙홀로 빨려 들어갈때는 일단 주변에 강착원반을 형성하게 된다. 그리고 사상의 지평면으로 사라져야 하지만 이것도 너무 한꺼번에 많은 물질이 빨려 들어갈 때는 모든 물질이 한번에 들어갈 수는 없다. 마치 문은 좁은 데 한꺼번에 너무 많은 사람이 몰려서 교착상태에 빠지는 것과 같다. 


 한편 블랙홀 주변에는 강력한 자기장이 형성되게 되는데 이 자기장의 영향으로 블랙홀의 회전 축에는 강력한 자기의 흐름이 발생하게 된다. 결국 강착원반에 너무 많은 물질들이 다 빨려들어가지 못하면 이 곳으로 빠져나가게 되는데 이를 제트 (Jet) 라 부른다. 


(일반적으로 블랙홀 하면 흡수하는 천체의 이미지가 강하지만 많은 물질이 빨려들어 갈때는 이렇게 강력한 제트를 내뿜는다 This file is in the public domain because it was created by NASA)


 이와 같은 강착 원반과 제트의 분출은 우리가 실제로 은하 중심 블랙홀에서 볼 수 있다. 


(은하 M87 의 중심 블랙홀에서 나오는 강력한 제트  This file is in the public domain because it was created by NASA )


 그런데 이 경우에는 별의 중심에서 바로 제트가 뿜어져 나오게 된다. 그 힘은 엄청나서 결국 별은 양축 방향으로 대 폭발을 일으킨다. 







 위의 동영상은 이 폭발을 묘사한 것이다. 이 양축 방향의 광속으로 뿜어져 나오는 제트는 주변 물질과 충돌해 엄청난 열로 가열되며 감마선을 분출하게 된다. 


 만약 우리가 이 폭발을 축 방향에서 보게 되면 긴 감마선 버스트로 관측하게 되는 것이다. 이 점을 생각해 본다면 실제로 우주에는 이와 같은 극초신성의 숫자가 생각보다 많으며 우리가 축방향에서 관측한 것은 그 중 극히 일부일 가능성도 있다. 


 이와 같은 강력한 감마선 폭발이 만약 지구에서 비교적 가까운 거리에서 일어난다면 지구 생태계에 심각한 타격을 줄 수도 있다. 여기에 관해서는 한가지 재미있는 이론이 있는데 4억 4천만년전의 오르도비스 - 실루리안 멸종 사건 (Ordovician–Silurian extinction event) 의 원인이 6천 광년 정도 떨어진 위치의 감마레이 버스트라는 것이다. 그러나 확실히 입증할 만한 증거가 있는 이론은 아니다. 


 물론 충분히 가까운 거리에 있는 감마선 버스트는 지구 생명체에 엄청난 타격을 입힐 수 있는 것은 사실이다. 이 문제에 대해서는 다음에 다시 이야기할 생각이다.

  한편 짧은 감마선 버스트의 기원에 대해서는 아직도 의견이 엇갈리고 있다. 여기엔 몇가지 가설이 존재하는데 예를 들면 중성자성의 충돌 같은 원인이다. 그러나 아직도 규명되어야 하는 부분들이 많다.

 아무튼 이 극초신성의 폭발은 우주에서 빅뱅 자체를 제외하면 가장 거대한 폭발로 생각된다. 


 

댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...