기본 콘텐츠로 건너뛰기

농사 짓는 아메바 - farmer amoeba Dictyostelium discoideum



 토양에 서식하는 아베마의 한 종류인 Dictyostelium discoideum 은 단세포 동물치곤 약간 복잡한 생활사를 가지고 있습니다. 이 아베마가 시기에 따라서 단세포 (unicelluar growth) 생활을 하다가 이들이 모여 다시 다세포 생활 (multicelluar development) 를 한다는 점 자체는 자연계에서 아주 드문일도 아니고 놀라운 일도 아니라고 할 수 있지만 일종의 사회적 공동체를 이루고 농사도 짓는 (?) 다는 사실은 놀라운 일이라고 할 수 있습니다. 최근의 연구에 의해 밝혀진 바에 의하면 단세포 동물이면 단순하게 살 것이라는 인간의 편견을 완전히 바꾸어 놓는 의외의 생활사가 D. discoideum 에 숨겨져 있습니다.




(D. discoideum  의 자실체 (Fruiting body : 균류의 포자 형성체) 의 모습.  public domain image  http://en.wikipedia.org/wiki/File:Dictyostelium_Fruiting_Bodies.JPG )



(D. discoideum  의 생활사  http://en.wikipedia.org/wiki/File:Dicty_Life_Cycle_H01.svg )


 이 아메바는 일종의 알이라고 할 수 있는 자실체가 성숙되면 여기서 포자 (spore) 가 퍼저셔 주변 환경으로 방출됩니다. 이후 발아 (germination) 한 아메바는 주변의 박테리아 (특히 엽산 folic acid 를 분비하는 박테리아를 좋아함) 를 잡아먹으면서 성장과 분열을 반복합니다. D. discoideum  는 먹이가 풍부한 시기에는 이렇게 점균아메바 (myxamoebae) 상태로 존재하다가 먹이가 다 떨어지고 굶주리면 뭉쳐서 다세포 시기로 넘어가게 됩니다.


 이들은 육안으로도 보이는 덩어리를 형성하게 되는데 이를 이동체 (slug) 라 부릅니다. 이들 점균류(粘菌類, Mycetozoa), 혹은 변형균류(變形菌類, Myxomycetes) 들은 우리 주변에서 흔하게 볼 수 있으며 생활 환경에 따라 단세포/다세포 형태를 변형하며 생활사를 영위하게 됩니다. 덕분에 분류학적으로 그 분류가 까다로운 종류이기도 합니다. 아무튼 여기까지는 서론이었고 본론은 이제부터 입니다.


 2011 년 데브라 브룩 (Debra A. Brock) 등이 네이처에 보고한 바에 의하면 이 작은 아메바들이 사실은 세상에서 가장 작은 농부들이라고 합니다. (1) 브룩은 처음 이 작은 아메바가 자신보다 더 작은 박테리아를 체내에 지니고 있는 것을 보았을 때 (포식한 것이 아니었음) 호기심을 가지고 고생끝에 두개의 균주를 분리하는데 성공했습니다. 이들은 모두 Pseudomonas fluorescens 로 유전적으로 동일한 종의 박테리아 였습니다.


 하버드 대학의 존 클라디 (Jon Clardy of the Harvard Medical School in Boston) 등 다른 연구자들의 도움을 얻어 이 아베마와 박테리아의 놀라운 공생 관계를 연구했는데 이들 아베마들이 박테리아를 서식처에 뿌린 후 다시 수확한다는 사실이 밝혀진 것도 이때였습니다. 즉 농사 짓는 단세포 생물을 발견한 것이었습니다.




(농사짓는  D. discoideum 의 생활사. 클릭하면 원본
http://en.wikipedia.org/wiki/File:Life-cycle_of_farmer_dictyostelium_discoideum.jpg )


 이들은 다음해 농사를 위해 파종할 씨를 먹지 않는 농부들처럼 농사지을 밑천인 박테리아를 자실체안에 가지고 있습니다. 이들이 발아하면 박테리아를 토양에 뿌려 증식시킨후 먹이로 삼게 되는데 중요한 것은 포식한 박테리아를 다 포식하지 않게 만드는 메카니즘입니다. 포식한 박테리아 중 일부는 phagosome 과 lysosome 이 달라 붙는 것을 - 달라 붙으면 소화됨 - 방해하는 메카니즘으로 보호 받습니다. 이후 이들이 다시 자실체를 만들 시기가 되면 다시 위의 사이클이 반복됩니다.


 과학자들이 밝힌 바에 의하면 놀랍게도 모든 D. discoideum  이 농사를 짓지 않습니다. 농사를 짓기 위해서는 많은 비용을 지불할 수 밖에 없기 때문인데 사실 먹이가 풍부한 환경에서 농사를 짓는 건 바보 짓이라고 할 수 있죠. 필요에 따라 농사를 짓는 이런 놀라운 적응력은 진화가 만든 생명의 경이라고 할 수 있습니다.


 2011 년 이 결과가 발표된 이후 많은 연구자들이 이에 대한 연구를 진행중에 있는데 2013 년 PNAS 에 발표한 바에 의하면 이들 아메바들이 오랜 세월에 걸쳐 사실 먹을 수 없는 균들을 먹을 수 있게 진화시켜온 것으로 보인다고 합니다. 이와 같은 사실은 농사에 사용된 균들과 야생 균들의 유전자를 비교하므로써 밝혀졌습니다.  (2)


 이 연구의 공저자인 퀄러 (David C. Queller) 는 '계통도는 포식할 수 있는 능력이 파생된 특성임을 보여준다. 이 균들은 본래 먹을 수 없던 것이었다. 그러나 먹을 수 있게 변했다. 이는 진화에서 기묘한 일이다. (먹히지 않기 위해서가 아니라) 먹히기 위해 진화했기 때문이다 ... The tree also tells us that edibility is a derived trait. These guys used to be inedible and became edible. That's just a weird thing to evolve: to be able to eaten '


 이런 비슷한 경우는 인간이 야생 품종을 길들여 먹기 편리한 작물이나 가축으로 길들인 것에 비견할 만 합니다. 인위적인 선택압을 주는 경우 본래라면 잘 진화시키지 않을 인간에게 유용한 특성을 가진 품종들을 진화시킬 수 있습니다. 이런 비슷한 사례를 아베마가 해냈다는 것은 역시 자연의 경이 가운데 하나일 것입니다.  



 참고


 Journal Reference


 1. Brock DA, Douglas TE, Queller DC, Strassmann JE (20 January 2011 2011). "Primitive agriculture in a social amoeba". Nature 469 (7330): 393–396. doi:10.1038/nature09668. PMID 21248849

 2. Pierre Stallforth, Debra A. Brock, Alexandra M. Cantley, Xiangjun Tian, David C. Queller, Joan E. Strassmann, and Jon Clardy. A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene. PNAS, July 29, 2013 DOI: 10.1073/pnas.1308199110


http://en.wikipedia.org/wiki/Dictyostelium_discoideum

http://www.sciencedaily.com/releases/2013/07/130729161759.htm







댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...