기본 콘텐츠로 건너뛰기

해수 온도차 발전이 경제성을 확보할 수 있을까 ?



 인류의 역사를 약간 비약해서 말한다면 자연으로부터 더 많은 에너지를 끌어내는 과정이었다고 할 수 있을 것입니다. 최초의 불의 발명에서 소가 끄는 쟁기, 증기 기관, 범선, 자동차, 발전소, 전기 같은 문명의 이기들은 결국 에너지를 더 많이, 그리고 더 효율적으로 사용하는 과정이라고 할 수 있겠죠. 

 18세기 이전까지 인류가 사용하던 대부분의 에너지는 결국 풍력, 수력, 혹은 동물의 힘 같은 자연 에너지였습니다. 하지만 산업 혁명 이후 인류의 주된 에너지는 화석 연료로 이동하게 됩니다. 아마도 화석 연료의 힘이 아니라면 인류는 지금 같은 산업 문명을 이루고 살 지는 못했을 것입니다. 그러나 21 세기에 이르러 과도한 화석 연료 사용으로 인한 대기중 이산화탄소 농도의 급격한 증가는 지구 온난화라는 달갑지 않은 문제를 일으키고 있습니다. 그리고 비록 당장 고갈 위기에 직면하지는 않았다고 해도 결국 화석 연료 자체가 언젠가는 고갈되는 1 회용 연료라는 점도 문제로 지적되고 있습니다. 

 따라서 이미 20세기에 인류는 화석 연료 이외의 방법으로 에너지를 얻는 방법을 다양하게 탐색했습니다. 풍력, 태양에너지, 수력, 원자력, 지열, 바이오 연료 등 아주 다양한 방법이 제시되었는데 각기 장점을 가지고 있는 반면 큰 단점들도 가지고 있죠. 앞에서 언급한 에너지들은 이미 모두 실용화 된 것이지만 오래전부터 꾸준히 그 원리가 제시되었음에도 불구하고 현재까지 실용화 되지 않은 대체 에너지들이 있습니다. 그 중 대표적인 것이 해수 온도차 발전이죠. 

 바닷물의 온도는 깊은 심해에서는 거의 비슷합니다. 물은 섭씨 4도 부근에서 가장 밀도가 높아져 아래로 가라앉기 때문이죠. 반면 표면 해수의 온도는 지역에 따라 다양합니다. 열대 지역에서는 해수의 표면온도는 높은 반면 중간층과 심해의 온도는 낮아서 이 온도차를 이용한다면 발전이 가능할 수 있습니다. 

 최근 리핑 리우 교수(Liping Liu, Associate Professor at Rutgers University)는 저널  New Journal of Physics에 이와 같은 해수 온도차 발전의 단가가 장래에 태양광 발전만큼 저렴해 질 가능성이 있다는 주장을 발표했습니다. 그가 구상하는 해수 온도차 발전의 핵심은 바로 열전효과(thermoelectric effect)에 있습니다. 


 일반적으로 열전효과는 열과 전기의 상호 작용에 대한 효과들로 제벡 효과, 펠티에 효과, 톰슨 효과를 합쳐서 부르는 용어입니다. 물론 발전에서는 열이 전기로 바뀌는 효과를 이용하는 것이죠. 열전 효과를 이용한 발전 방식은 매우 적은 온도차를 이용해서 발전이 가능하다는 장점이 있지만 현재 널리 쓰이지는 못하고 있습니다. 발전 장치를 만드는 건 어렵지 않은데 발전 효율이 낮고 발전양도 작으며 투자 비용에 비해 경제적이지 못하기 때문입니다.


 리우 교수의 제안은 열대 지역의 바다에 약 깊이 600 미터 정도 파이프를 만들고 이 물을 순환시켜 열전발전을 하는 것입니다. 그러면 온도 차이는 약 20K(켈빈) 정도 난다고 합니다. 펌프를 돌리는데 필요한 에너지는 파력 같이 다른 자연 에너지를 사용하고 열전 효과를 최대화하기 위해 미세 파이프라인에 물을 통과시킵니다. (아래 그림) 




(A thermoelectric power plant might use energy harvested from ocean waves to pump cold water up through a heat exchanger/generator near the surface. The heat exchanger is made of thermoelectric materials which can use the temperature gradient between the warm and cold water to generate electricity. Credit: Liu. (CC BY 3.0)


 이와 같은 발전 방식이 경제성을 가지기 위해서는 그 규모가 매우 커야할 것입니다. 거대한 파이프와 열/에너지 교환 튜브를 만들기 위해서는 기술적 문제는 물론이거니와 초기 비용이 막대하게 들 가능성이 높습니다. 하지만 현재의 기술 수준으로도 태양광 수준의 경제성은 확보할 수 있다는 것이 그의 주장입니다. 물론 이는 앞으로 검증이 필요한 부분이겠죠. 


 한가지 흥미로운 것은 같은 기술이 지열 발전소를 위해서 사용될 수도 있다는 것입니다. 이 경우에는 약 50K 정도 온도 차이로 발전이 가능할 것으로 예상했습니다. 땅속 깊이에서는 온도가 올라가고 지표에서는 공기에 의해 식혀진다는 기본적인 개념으로 발전소를 만드는 것입니다.   



(A thermoelectric power plant can also use geothermal sources to produce the temperature gradient. Here, hot water is pumped up to the heat exchanger/generator, where it is cooled by air. Credit: Liu. (CC BY 3.0))


 이와 같은 열전 효과 발전소는 낮이나 밤이나, 바람이 불든지 아니든지 간에 발전을 할 수 있다는 점에서 분명 유리하긴 하지만 매우 저렴하고 신뢰성 높은 열전 소자와 더불어 대규모 규모의 경제를 실현해야 한다는 점 때문에 초기 투자 비용이 막대하게 들 가능성이 높습니다. 개념은 흥미롭긴 한데 과연 실현 가능성이 있을지는 약간 회의적이네요. 


참고 

Liping Liu. "Feasibility of large-scale power plants based on thermoelectric effects." New Journal of Physics. DOI: 10.1088/1367-2630/16/12/123019

댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...