기본 콘텐츠로 건너뛰기

인간의 뇌를 서로 연결하는 인터페이스 ( First Human Brain-To-Brain Interface)




 워싱턴 대학 (Univsersity of Washington) 의 연구자들이 아주 독특한 실험에 성공했다고 보도자료를 통해 밝혔습니다. 그 실험이란 한 사람의 뇌의 전기적 신호를 분석한 후 다른 사람의 뇌를 컨트롤하는 것입니다. 진짜 SF 를 소재로한 만화나 영화에서 볼 것 같은 일이 워싱턴 대학의 연구팀에 의해 성공했다는 이야기입니다.

 워싱턴 대학의 라제쉬 라오 교수 (Rajesh Rao, UW professor of computer science and engineering) 는 그의 동료인 안드레아 스토코 교수 (Andrea Stocco,  UW research assistant professor in psychology at the UW's Institute for Learning & Brain Sciences) 와 함께 이 대담한 연구를 진행한 결과를 논문으로 발표하기 앞서 대중에 공개했습니다. 


 이에 의하면 2013 년 8월 12일 라오 교수는 EEG (electroencephalogram) 를 기록하는 기계를 이용해 그의 뇌의 전기 활돌을 모니터링 했습니다. (아래 사진에서 좌측에 있는 사람이 머리에 쓴 것 ) 그리고 워싱턴 대학 캠퍼스 다른 곳에 있는 스토코 교수는 이 신호를 받아 특정 행동을 할 수 있도록 운동 피질 (motor cortex) 를 직접 전기적으로 자극하는 경두개 자기 자극 (TMS : transcranial magnetic stimulation) 코일을 장착했습니다. (아래 사진에서 우측 사람이 머리에 장치된 것 )  



(EEG 기록 장치를 머리에 쓴 라오 교수 (좌) 와 경두개 자기 자극 장치 (TMS) 를 머리에 장치한 스토코 교수 (우) 의 모습.     
University of Washington University of Washington researcher Rajesh Rao, left, plays a computer game with his mind. Across campus, researcher Andrea Stocco, right, wears a magnetic stimulation coil over the left motor cortex region of his brain. Stocco’s right index finger moved involuntarily to hit the “fire” button as part of the first human brain-to-brain interface demonstration. (Credit: Image courtesy of University of Washington))  
 
 EEG 는 쉽게 말해 뇌파를 기록하는 것이기 때문에 어떤 것인지 쉽게 이해가 가능하겠지만 TMS 는 그렇지 않을 수 있습니다. 여기서 간단히 TMS 를 설명하자면 전자기 유도 (electromagentic induction) 현상을 이용해서 두개골을 절개하는 등의 침습적인 방법 없이 신경세포의 탈분극 (depolarization) 을 유도하는 장치입니다.
 
 즉 뇌의 일부를 자극하는데 있어 실제 전기 자극을 이용하는 것이 아니라 뇌의 외부에서 전자기 유도를 이용하는 방식이라고 하겠습니다. 대개 두개의 강력한 전자기 코일 (마치 8 자 모양으로 생김) 에 의해 유도된 전류는 1.5 - 2 cm 정도 범위를 투과해서 신경 세포의 탈분극을 유도합니다. 이를 반복적으로 시행하는 repetitive TMS (rTMS) 는 2008 년 FDA 로 부터 다른 치료에 반응하지 않는 우울증의 치료로 승인 받은 바 있으며 파킨슨 병이나 편두통 등 다른 뇌신경 질환의 치료에도 활용하기 위한 연구가 진행된 바 있습니다. 그리고 인간에서의 치료 목적 외에도 동물 및 인간에서 연구용으로도 활용되고 있습니다.
 
 아무튼 이를 이용해 라오 교수는 컴퓨터 게임을 하면서 마음 속으로 오른쪽 손가락을 움직이는 생각을 했습니다. 스카이프를 통해 연결된 스토코 교수는 (서로 간에 모습이나 소리는 전혀 들을 수 없는 떨어진 위치에 있었음) TMS 에 의한 자극으로 키보드에 발사 버튼을 눌렀습니다. 즉 다른 사람의 생각을 통해 뇌를 자극해서 움직이도록 한 것입니다. (동영상 참조)
 

(시연 영상)  
 
 사실 라오 교수는 10 년 전부터 뇌 - 컴퓨터 인터페이스 (Brain Computer Interface  BCI) 를 연구하고 있었으며 2011 년 부터 뇌- 뇌 인터페이스 (Brain - Brain Interface  BBI) 연구에 착수했습니다. 2013 년에는 듀크 대학의 연구자들이 두마리의 쥐의 뇌를 서로 연결하는 BBI 를 구현했고 하버드 대학의 연구자들은 인간의 뇌와 쥐의 뇌를 연결하는 BBI 를 구현하기도 했습니다. 워싱턴 대학의 연구자들은 사람 - 사람 간 BBI 구현에 성공한 셈입니다.
 

(사람의 뇌와 쥐의 뇌간에 BBI 실험. 생각만으로 쥐의 꼬리를 움직이게 만든 연구로 하버드 대학의 연구팀이 2013 년 7월 31일 데몬스트레이션 함 )  
 

(듀크 대학 팀의 연구로 쥐와 쥐의 뇌 사이 BBI 를 구현. )
 
 워싱턴 대학 연구팀은 여러 가지 분야에 이 기술이 응용이 가능할지 모른다고 생각하고 있습니다. 이를 테면 비행기 조정사가 조종을 할 수 없는 긴급 상황에 다른 사람을 컨트롤 하거나 하는 경우를 예를 들었는데 사실 흔히 있을 것으로 생각하기는 어려운 경우 입니다. 다만 일부에서 우려할 수 있듯이 다른 사람의 정신이나 행동을 그 사람의 의사에 반해서 조절하기는 힘들 것이라고 언급했습니다. 사실 지금 단계에서는 아주 단순한 행동 밖에 지시할 수 없긴 합니다.
 
 다음 연구 단계는 좀더 복잡한 행동을 지시하는 것이며 더 나아가 보다 많은 사람을 대상으로 하는 것이라고 합니다. 개인적으로는 사람 - 동물 뇌 인터페이스의 경우가 더 실용적이지 않을까 생각하는데 (인간이 동물을 조작해서 정찰 수색 등의 임무에 투입하는 경우) 아무튼 SF 에서나 볼 법한 연구가 실제로 진행된다는 사실이 한편으로 놀랍기만 합니다.  개인적으로는 공각 기동대가 생각나는 내용이네요.
 
 참고
 
  

댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...