기본 콘텐츠로 건너뛰기

태양계 이야기 429 - 뉴호라이즌스가 본 닉스와 히드라



(Pluto’s moon Nix is viewed at three different times during the New Horizons July 2015 flyby. Credit: NASA/JHUAPL/SwRI)​

(Pluto’s moon Nix is shown in high-resolution black-and-white and lower resolution color. Credit: NASA/JHUAPL/SwRI)​
 명왕성은 카론 이외에 4 개의 작은 위성을 거느리고 있습니다. 이 위성들은 뉴호라이즌스호가 도착하기 전까지 지구에서 작은 점으로밖에 보이지 않았던 위성들이었죠. 그 크기는 가장 큰 것도 지름 50km를 넘지 않습니다. 새로 공개된 닉스와 히드라의 모습은 감자모양의 찌그러진 위성을 보여주고 있습니다.
 위의 사진에서 닉스의 이미지는 사실 그렇게 선명하진 않습니다. 하지만 몇 가지 중요한 정보를 얻을 수 있습니다. 닉스는 과거에 파괴될 뻔한 과거를 겨우 피했던 것으로 보입니다. 중앙에 보이는 대형 크레이터는 닉스의 위험했던 과거를 설명해주고 있습니다. 그보다 더 흥미로운 사실은 크레이터 주변에 붉은 색의 물질이 있다는 것입니다.
 닉스가 명왕성의 다른 위성들과 색상이 다른 이유는 바로 이 물질 때문인데, 이것이 어디서 기원한 물질인지는 앞으로 흥미로운 연구과제가 될 것 같습니다. 아무튼 붉은 색의 물질이 닉스에 크게 충돌했고 거대한 크레이터를 남겼다고 할 수 있을 것 같습니다.
 뉴호라이즌스의 가장 중요한 망원경인 LORRI 이미지 옆에 있는 MVIC(Multispectral Visible Imaging Camera)는 다양한 파장대의 이미지를 측정하는 대신 해상도가 LORRI의 1/4 수준입니다. 이 이미지는 파란색, 붉은색(가시광), 근적외선, 그리고 메탄의 파장을 담은 것으로 메탄이 풍부한 천체가 닉스에 충돌했다는 것을 암시하고 있습니다.
 앞으로 더 많은 정보가 도착하면 닉스과 과거에 어떤 일을 겪었는지, 그리고 어떤 사연으로 명왕성의 위성이 되었는지에 대한 결론이 나올 것으로 보입니다.

(Pluto’s moon Hydra as seen from NASA’s New Horizons spacecraft, July 14, 2015. Credit: NASA/JHUAPL/SwRI) 
 히드라의 표면 역시 선명하지는 않지만, 이 위성이 과거에 험한 일을 겪었다는 사실을 알려주고 있습니다. 대형 크레이터들은 과거에 있었던 커다란 충돌의 증거입니다.

 앞으로 더 데이터가 도착하면 후속 연구를 통해서 이 위성들의 기원이 어디에서 유래했는지, 그리고 독특한 붉은 지형의 이미는 어떤 것인지를 알게 될 것입니다.
참고
  

댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다. 잘 쓰지도 않을 방법을 열심히 공부하는 것은 아무래도 효율

150년 만에 다시 울린 희귀 곤충의 울음 소리

  ( The katydid Prophalangopsis obscura has been lost since it was first collected, with new evidence suggesting cold areas of Northern India and Tibet may be the species' habitat. Credit: Charlie Woodrow, licensed under CC BY 4.0 ) ( The Museum's specimen of P. obscura is the only confirmed member of the species in existence. Image . Credit: The Trustees of the Natural History Museum, London )  과학자들이 1869년 처음 보고된 후 지금까지 소식이 끊긴 오래 전 희귀 곤충의 울음 소리를 재현하는데 성공했습니다. 프로팔랑곱시스 옵스큐라 ( Prophalangopsis obscura)는 이상한 이름만큼이나 이상한 곤충으로 매우 희귀한 메뚜기목 곤충입니다. 친척인 여치나 메뚜기와는 오래전 갈라진 독자 그룹으로 매우 큰 날개를 지니고 있으며 인도와 티벳의 고산 지대에 사는 것으로 보입니다.   유일한 표본은 수컷 성체로 2005년에 암컷으로 생각되는 2마리가 추가로 발견되긴 했으나 정확히 같은 종인지는 다소 미지수인 상태입니다. 현재까지 확실한 표본은 수컷 성체 한 마리가 전부인 미스터리 곤충인 셈입니다.   하지만 과학자들은 그 형태를 볼 때 이들 역시 울음 소리를 통해 짝짓기에서 암컷을 유인했을 것으로 보고 있습니다. 그런데 높은 고산 지대에서 먼 거리를 이동하는 곤충이기 때문에 낮은 피치의 울음 소리를 냈을 것으로 보입니다. 문제는 이런 소리는 암컷 만이 아니라 박쥐도 잘 듣는다는 것입니다. 사실 이들은 중생대 쥐라기 부터 존재했던 그룹으로 당시에는 박쥐가 없어 이런 방식이 잘 통했을 것입니다. 하지만 신생대에 박쥐가 등장하면서 플로팔랑곱

근육 떨림을 막는 전자 임플란트

  (Three of the muscle-stimulating implanted electrodes – these ones are attached to silicone tubes which were used to more easily extract them from test subjects' bodies once the study was completed. Credit: Fraunhofer IBMT) ​ (A diagram of the system. Credit: Equinor Open Data License) ​ ​ ​ 근육이 자기 의지와 관계 없이 갑자기 수축하거나 떨림 (tremor, 진전) 증상이 나타나는 경우 현재까지는 완전히 막을 수 있는 치료제가 없습니다. 하지만 스페인 국립 연구 위원회(Spanish National Research Council)가 이끄는 독일, 아이슬란드, 영국, 미국 의 과학자들은 이 문제에 대한 좀 더 근본적인 해결책을 내놓았습니다. ​ ​ 이 연구는 국제 과학 컨소시엄인 EXTEND 프로젝트의 일부로 신체에 신경 신호를 조절하는 전극을 넣어 움직임을 조절하는 것이 목표입니다. ​ ​ 방법은 간단합니다. 생체 적합 물질로 만든 길이 3cm, 지름 1mm 크기의 백금-이리듐/실리콘 (platinum-iridium/silicone) 임플란트를 근육 속에 넣습니다. 각 임플란트엔 센서와 액추에이터 역할을 할 두 개의 전극이 있습니다. 외부에 있는 전극은 전원을 공급하는 기능도 합니다. ​ ​ 이 임플란트는 근육의 떨림이나 이상 동작을 파악하면 신호를 보내 움직임을 멈추게 합니다. 초기 임상 실험 결과는 1-2시간 정도 작동으로도 더 긴 시간동안 떨림 증상을 막을 수 있는 것으로 나타났습니다. ​ ​ 실제 임상에서 사용하게 될지는 지금 단계에서 말하기 이르지만, 먼가 사이버펑크의 세계가 좀 더 가까워진 것 같은 전자 임플란트 같습니다. ​ ​ 참고 ​ ​ https://newatlas.com/health-wel