기본 콘텐츠로 건너뛰기

태양계 이야기 98 - 카시니에 의해 밝혀지는 타이탄의 본 모습 (2)







 - 타이탄의 지표와 기후 


 앞서 이야기한 타이탄의 복잡한 대기와 다양한 기후는 타이탄 역시 지구에서 볼 수 있는 것 같은 다양한 지형을 가지고 있을 것이라는 추측을 가능하게 만듭니다. 따라서 타이탄 지표에 착륙한 호이겐스가 보내올 영상에 큰 기대를 걸고 있었으나 아쉽게도 호이겐스가 보내온 화면은 지표에 돌과 자갈 처럼 보이는 (실제로는 물이 얼어서 생긴 얼음으로 보임) 황량한 표면이었습니다. 




(호이겐스가 보네온 지표 영상을 선명하게 이미지 처리한 것. 실제로는 지표 부근도 뿌옇게 보이는 상태  NASA.  public domain )


 착륙 지점에는 약 18 km 두께의 메탄 구름이 존재해서 선면한 영상을 얻기는 힘들었습니다. 과학자들은 타이탄의 표면에서 액체로 존재할 수 있는 메탄 (CH4,  녹는 점 - 182 ℃, 끓는 점 - 160 ~ - 164   ) 에탄 (C2H6,  녹는점 - 183.6 ℃, 끓는 점 -89  ), 프로판 (C3H8, 녹는점 - 188 ℃, 끓는 점 - 42 ℃ ) 등의 탄화수소로 이루어진 강과 호수를 볼 수 있도록 호이겐스를 액체 표면에도 착륙할 수 있는 특수 구조로 제작했으나 그냥 단단하고 황량한 얼음 황무지에 착륙한 셈입니다. 


 하지만 호이겐스는 착륙하는 과정에서 타이탄에 실제 강과 호수가 있다는 사실을 발견했습니다. 호이겐스가 고도 16.2 km 에서 찍은 사진에는 강이라고 볼 수 밖에 없는 지형이 발견되었습니다. 



(호이겐스가 착륙 중에 고도16.2 km 지점에서 찍은 사진    NASA/ESA   public domain   )

 호이겐스가 착륙한 것은 2004 년 12월 25일이었는데 이후에도 카시니는 타이탄에 여러 차례 근접해 다양한 관측 기기로 타이탄의 대기와 표면을 조사했습니다. 특히 카시니에는 지구보다 두터운 타이탄의 대기를 뚫고 지표를 관측할 수 있는 합성 개구 레이더 (Synthetic Aperture Radar  SAR) 가 탑재되어 있습니다. 반사된 레이더를 분석하면 이것이 액체에서 반사된 것인지 울퉁불퉁한 표면에서 반사된 것인지를 알 수 있습니다. 그 결과 타이탄에는 큰 바다보다는 무수히 많은 호수들이 존재하는 것으로 나타났습니다. 



(합성 개구 레이더가 관측한 타이탄의 북극지역의 가상 칼라 이미지. 파란색으로 보이는 부분은 호수로 생각되는 지형.   NASA  /  public domain) 


위의 이미지에서 처럼 타이탄에는 주로 액체 상태의 메탄과 에탄이 주성분이 되는 호수들이 다수 존재합니다. 이것들 가운데 가장 큰 축에 속하는 것들은 바다라는 의미의 Mare (maria) 라고 부르고 있는데 대표적인 것은 지구의 카스피해 만한 면적을 가진 호수인 크라켄 마레 (Kraken Mare) 로 현재까지 관측된 것 가운데 가장 큰 호수입니다. (위의 사진에서는 왼쪽) 


 그리고 그 다음으로 큰 호수는 리지아 마레 (Ligeia Mare) 로 위의 사진에서 전체 모습이 다 보이는 오른쪽의 호수입니다. 각각 크라켄 해와 리지아 해로 부를 수 있겠죠. 마지막으로 가장 작은 푼가 마레 (Punga Mare) 가 있는데 위의 사진에서 한 가운데 있는 가장 작은 호수입니다. 이것들 보다 작은 호수들은 호수라는 의미의 lacus 로 부르고 있습니다. 


 북극을 중심으로 존재하는 3개의 마레들의 크기는 크라켄 마레가 지름 1170 km 정도로 가장 크고 면적도 카스피해 (약 37 만 ㎢ ) 수준으로 큽니다. 두번째 큰 리지아 마레는 지름 500 km 정도이고 대략 10 만 수준의 면적을 가지고 있습니다. 오대호 가운데 하나인 슈피리어호보다 조금 큰 수준으로 보입니다. 타이탄의 표면적을 감안하면 지구에서는 흑해가 비슷한 비중을 가진 바다라고 할 수 있습니다. 푼가 마레는 380 km 정도 지름입니다.  






(오대호 가운데 하나인 슈피리어 호 (lake superior )와 리지아 마레의 크기 비교. 타이탄에는 대양보다는 거대한 호수들이 다수 존재하는 것으로 생각됨.   NASA/  public domain) 



 (합성 개구 레이더는 타이탄의 크라켄 마레와 리지아 마레 해안에서 잘 발달된 강과 지류 처럼 보이는 것들을 발견했음. 이것은 어느 정도 미리 예측되었던 것이지만 지구 이외의 천체에서 처음으로 액체가 실제 흐르고 있는 강을 발견한 것이기도 합니다. NASA/  public domain  ) 


 이 정도만 해도 놀라운 발견이기는 하지만 새로운 놀라운 발견들이 더 존재합니다. 타이탄은 토성을 따라 태양 주위를 29.4571 년 마다 하다 한번 공전하게 되는데 태양에서 토성까지 거리가 변함에 따라 태양에너지의 양도 따라 변하게 됩니다. (참고로 토성의 원일점은 15억 1325만 km 이고 근일점은 13억 5357 만 km 입니다. 근일점과 원일점에서 거리 차이는 태양 - 지구 공전 궤도 보다 큽니다.) 따라서 타이탄의 기온도 이에 따라 변화가 생깁니다. 하지만 이 거리의 차이보다 더 크게 타이탄의 기후에 영향을 주는 인자가 있습니다. 


 타이탄은 토성의 크기와 토성과의 거리를 생각해을 때 토성에 아주 근접해서 돌고 있습니다. 따라서 지구의 달 처럼 타이탄의 자전 및 공전 주기는 동기화 되어 있고 타이탄의 한쪽 면만 계속 토성을 따라 돌고 있습니다. 또 공전 궤도나 자전축 모두 거의 원과 수직입니다. 그러나 토성 자체는 지구와 거의 비슷한 정도인 26 도 정도로 자전축이 기울어져 있습니다. 이것이 의미하는 바는 사실상 타이탄의 공전 궤도가 태양 광선 방향에서 거의 그 정도 수준으로 기울어져 있다는 것입니다. 이에 따라 타이탄에서는 대략 토성의 공전 주기와 비슷한 29.5 년 마다 계절의 변화가 일어나게 됩니다. 



(토성과 그 위성들. 토성 근방에 타이탄의 경우 토성을 중심으로 보면 적도에서 거의 수평인 궤도를 돌고 있지만 토성 차제 자전축이 기울어져 있어 태양을 중심으로 보면 기울어진 공전궤도 돌고 있음. 사진은 보이저 1 호가 찍은 토성과 그 위성들.   NASA   public domain    )


 과학자들은 현재 타이탄의 북반구는 겨울이고 남반구는 여름이라고 생각하고 있습니다. 즉 기온이 내려가면 증발하는 것보다 더 많은 메탄과 에탄등이 응결되어 비나 눈이 되어 내리고 액체 상태의 큰 호수와 바다를 형성하는 반면 기온이 올라가면 반대로 증발하는 양이 많아져 호수와 바다가 줄어들거나 사라지는 현상이 일어난다는 것입니다. 겨울과 여름의 주기는 지구처럼 남북이 반대이며 대략 15년 정도 계절이 지속되는 것으로 생각되지만 보다 상세한 관측이 필요합니다.  


 앞서 타이탄 지표의 평균 기온이 - 179 ℃ 라고 이야기 하긴 했지만 이것이 모든 지역에서 기온이 그 정도라는 의미는 물론 아닙니다. 지구의 평균 기온도 14 ℃ 정도지만 계절, 위도와 지역에 따라 그 차이가 큰데, 타이탄에서도 마찬가지 현상이 일어나며 현재는 북반구가 겨울이라 북반구에 거대한 호수가 형성되어 있다는 것이죠. 


 타이탄에는 지구에서 볼 수 있는 해들리 순환도 일어나고 있을 것으로 생각합니다. 다만 지구와는 달리 하나의 거대한 해들리 세포 (Hadley Cell) 가 대기의 흐름을 지배하고 있는 것으로 보입니다. 메탄 및 에탄 등으로 구성된 구름도 순환하면서 눈과 비를 내리고 있는 것으로 보입니다. 그리고 극지방에서는 거대한 호수가 형성될 만큼 주기적으로 기온이 내려가는 것으로 생각됩니다. 다만 이 부분은 좀더 장기적인 관측이 필요할 것으로 보입니다. 왜냐하면 한번 계절의 순환 사이클이 30 년 가까이 되기 때문이죠.


 현재까지 발견된 호수들은 특히 북극에 집중적으로 존재하며 중위도 이하 - 이른바 온대 및 열대라고 생각할 수 있는 지역 - 에서는 발견되지 않는다는 것입니다. 이것이 의미하는 바는 아마도 타이탄의 중위도 및 저위도 지역의 기온이 따뜻해서 탄화수소의 비가 내려도 곧 다시 증발하게 되는 것으로 보입니다. 또 이 지역에는 강유량 (강수량이라고 해야 할 지 아니면 기름 유자를 써서 강유량이라고 해야 할 지 다소 애매한 부분) 이 적은 사막이 펼쳐져 있을 가능성도 있습니다.  


 분명한 것은 남극에도 호수가 북극보다 작지만 존재하고 있다는 사실입니다. 또 과학자들은 아마도 구름이 비가 되어 내린 후 호수를 형성하거나 기존의 호수를 더 크게 만드는 기상 현상이 일어나고 있으며 우리가 그 모습을 남극에서 관측했을지도 모른다고 생각하고 있습니다. 


   
(카시니가 찍은 2004 년과 2005 년 사이 남극의 온타리오 호수와 주변의 구름. 과학자들은 이 구름에서 메탄/에탄/프로판등으로 구성된 비가 내려 새로운 호수를 형성하고 온타리오 호수 (대략 길이 235 km 정도 길쭉한 호수 ) 에 액체를 추가로 공급한 것으로 보고 있음. 온타리오 호수는 타이탄에서는 남극에 존재하는 유일한 거대 호수임.   http://en.wikipedia.org/wiki/File:Titan_S._polar_lake_changes_2004-5.jpg )  


 안타까운 일이지만 카시니는 토성 주변을 공전하며 타이탄에 주기적으로 근접하기 때문에 상세한 기상 현상과 호수와 바다의 변화 등을 관측하는데는 한계가 있습니다. 미래에 타이탄의 주변 궤도를 돌면서 합성 개구 레이더 및 가시/적외선 영역 관측을 하는 탐사선이 개발된다면 우리는 타이탄의 지형에 대해서 더 잘 알 수 있을 것입니다. 실제로 이것도 계획 중에 있는데 나중에 설명해 보겠습니다. 






 참고 




댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...