기본 콘텐츠로 건너뛰기

로지스틱 회귀 분석 (8)





  로지스틱 회귀 분석에서 모델이 적합하고 문제가 없는지 검증하기 위해 몇 가지 더 알아볼 내용들이 있습니다. 과대산포 (overdispersion)는 이름처럼 데이터 값의 분포가 넓게 퍼져 있어 로지스틱 혹은 포아송 회귀 모형이 제대로 값을 예측하지 못하는 상태를 의미합니다. 이 경우 95% 신뢰구간을 구해보면 상당히 넓게 퍼져 있어 (예를 들어 0.32 - 6.85 처럼) 사실상 추정한 OR 값이 별 의미가 없는 상황이 되어 버립니다. 모형에서 의미 있는 과대 산포가 존재하는지 확인하는 방법은 아래와 같습니다. 우선 피마 인디언 예제를 다시 보겠습니다. 


library(moonBook)
library(mlbench)

data(PimaIndiansDiabetes)
pima <- pimaindiansdiabetes="" span="">

pima<-subset pima="" pressure="">0)
pima<-subset mass="" pima="">0)
pima<-subset glucose="" pima="">0)

pima$obesity[pima$mass>=30]=2
pima$obesity[pima$mass<30 span="">
pima$obesity[pima$mass<25 span="">
table(pima$obesity)

out=glm(diabetes~factor(obesity)+pressure+glucose+age+pedigree,family=binomial,data=pima)
summary(out)
extractOR(out)

> summary(out)

Call:
glm(formula = diabetes ~ factor(obesity) + pressure + glucose + 
    age + pedigree, family = binomial, data = pima)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.8133  -0.7259  -0.3803   0.7219   2.5514  

Coefficients:
                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)      -8.223152   0.831018  -9.895  < 2e-16 ***
factor(obesity)1  1.225678   0.471464   2.600 0.009330 ** 
factor(obesity)2  2.174498   0.441818   4.922 8.58e-07 ***
pressure         -0.001569   0.008389  -0.187 0.851656    
glucose           0.034531   0.003597   9.600  < 2e-16 ***
age               0.032288   0.008562   3.771 0.000163 ***
pedigree          0.984527   0.305211   3.226 0.001257 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 931.94  on 723  degrees of freedom
Residual deviance: 676.98  on 717  degrees of freedom
AIC: 690.98

Number of Fisher Scoring iterations: 5

> extractOR(out)
                   OR  lcl   ucl      p
(Intercept)      0.00 0.00  0.00 0.0000
factor(obesity)1 3.41 1.35  8.58 0.0093
factor(obesity)2 8.80 3.70 20.91 0.0000
pressure         1.00 0.98  1.01 0.8517
glucose          1.04 1.03  1.04 0.0000
age              1.03 1.02  1.05 0.0002
pedigree         2.68 1.47  4.87 0.0013


 95% 신뢰 구간을 보면 그렇게 넓게 퍼진 것 같지는 않습니다. 아래 계산식에 넣어 과대 산포의 가능성을 확인하겠습니다. 

out.od<-glm age="" diabetes="" factor="" family="binomial,data=pima)</span" glucose="" obesity="" pedigree="" pressure="">
pchisq(summary(out.od)$dispersion * out$df.residual, out$df.residual, lower = F)




 여기에서 0.05 이하의 값이 나오면 유의한 과대 산포의 가능성이 있는 것으로 판정하지만, 여기서는 당연하게도 0.49라는 값이 나왔습니다. 따라서 OR 값은 어느 정도 신뢰할 수 있습니다. 한편 앞서 살펴본 다중공선성은 어떨까요. 




 이 역시 vif 기능으로 계산이 가능합니다. 

library(car)
vif(out)

> vif(out)
                    GVIF Df GVIF^(1/(2*Df))
factor(obesity) 1.061830  2        1.015111
pressure        1.145471  1        1.070267
glucose         1.031855  1        1.015803
age             1.141080  1        1.068213
pedigree        1.004344  1        1.002169


 변수간에 특별한 다중공선성이 있지 않은 것으로 나타났습니다. 그렇다면 모형 자체가 심각한 문제가 있는 건 아니라는 이야기입니다. 


 과대산포나 다중공선성 모두 모형이 믿을 수 있는지를 보여주는 지표입니다. 그 자체가 좋은 모델을 말해주지는 않지만, 무리한 결론을 내리는 것을 막아줄 수 있습니다. 


댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

9000년 전 소녀의 모습을 복원하다.

( The final reconstruction. Credit: Oscar Nilsson )  그리스 아테나 대학과 스웨덴 연구자들이 1993년 발견된 선사 시대 소녀의 모습을 마치 살아있는 것처럼 복원하는데 성공했습니다. 이 유골은 그리스의 테살리아 지역의 테오페트라 동굴 ( Theopetra Cave )에서 발견된 것으로 연대는 9000년 전으로 추정됩니다. 유골의 주인공은 15-18세 사이의 소녀로 정확한 사인은 알 수 없으나 괴혈병, 빈혈, 관절 질환을 앓고 있었던 것으로 확인되었습니다.   이 소녀가 살았던 시기는 유럽 지역에서 수렵 채집인이 초기 농경으로 이전하는 시기였습니다. 다른 시기와 마찬가지로 이 시기의 사람들도 젊은 시절에 다양한 질환에 시달렸을 것이며 평균 수명 역시 매우 짧았을 것입니다. 비록 젊은 나이에 죽기는 했지만, 당시에는 이런 경우가 드물지 않았을 것이라는 이야기죠.   아무튼 문명의 새벽에 해당하는 시점에 살았기 때문에 이 소녀는 Dawn (그리스어로는  Avgi)라고 이름지어졌다고 합니다. 연구팀은 유골에 대한 상세한 스캔과 3D 프린팅 기술을 적용해서 살아있을 당시의 모습을 매우 현실적으로 복원했습니다. 그리고 그 결과 나타난 모습은.... 당시의 거친 환경을 보여주는 듯 합니다. 긴 턱은 당시를 살았던 사람이 대부분 그랬듯이 질긴 먹이를 오래 씹기 위한 것으로 보입니다.   강하고 억센 10대 소녀(?)의 모습은 당시 살아남기 위해서는 강해야 했다는 점을 말해주는 듯 합니다. 이렇게 억세보이는 주인공이라도 당시에는 전염병이나 혹은 기아에서 자유롭지는 못했기 때문에 결국 평균 수명은 길지 못했겠죠. 외모 만으로 평가해서는 안되겠지만, 당시의 거친 시대상을 보여주는 듯 해 흥미롭습니다.   참고  https://phys.org/news/2018-01-te...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...