기본 콘텐츠로 건너뛰기

로지스틱 회귀 분석 (9)



 지금까지 로지스틱 회귀 분석 설명은 질병의 유무 처럼 이분형 자료에 대한 설명이었습니다. 하지만 세 가지 이상 범주형 자료 역시 로지스틱 회귀 분석이 가능합니다. 결과 변수가 단순히 질병의 발생이 아니라 질병의 종류나 혹은 경과에 따른 여러 가지 결과 (종양이 성장, 변화 없음, 감소 등)으로 나타나는 경우 이분형이 아니라 다항 로지스틱 회귀 분석 (Multinomial Logistic Regression)을 사용할 수 있습니다. 주의할 점은 다중 로지스틱 회귀 분석 (Mutiple Logistic Regression)과 혼동하지 말아야 한다는 점입니다. 다중 로지스틱 회귀 분석은 이름은 비슷해 보이지만, 그냥 이분형 로지스틱 회귀 분석입니다. 



 다항 로지스틱 회귀 분석은 사실 생각보다 널리 쓰이지 않는 분석 방법입니다. 결과 해석이 복잡하기 때문에 반드시 결과가 셋 이상으로 나타나는 경우를 제외하면 쓰기 꺼려지는 것이죠. 하지만 다양한 결과를 분류해야 하는 예측 모형이나 머신러닝 분야에서는 유용하게 사용될 수 있습니다. 그래서 R에서 다항 로지스틱 회귀 분석 예제가 대부분 nnet 패키지를 사용합니다. nnet 패키지는 앞서 신경망에서 사용한 적이 있는데, 이 신경망 학습의 목적이 올바른 분류라는 점을 생각하면 nnet에 다항 로지스틱 회귀 분석이 포함된 이유도 이해할 수 있을 것 같습니다. 구글에서 가장 쉽게 검색할 수 있는 nnet 예제는 역시 iris입니다. 




 여기서는 다른 예제를 통해 다항 로지스틱 회귀 분석에 대해서 알아보겠습니다. moonBook 패키지에 있는 acs 데이터는 불안정 협십증 (unstable angina), ST 분절 비상승 심근경색증(Non-ST elevation myo- cardial infarction: NSTEMI), ST 분절 상승 심근경색증(ST elevation myo- cardial infarction: STEMI)이 발생한 환자들의 임상 정보를 담고 있는 데이터 입니다. 구조를 확인하면 다음과 같습니다. (우선 moonbook 패키지와 nnet 패키지를 로드합니다)


require(moonBook)
require(nnet)
str(acs)

> str(acs)
'data.frame': 857 obs. of  17 variables:
 $ age             : int  62 78 76 89 56 73 58 62 59 71 ...
 $ sex             : chr  "Male" "Female" "Female" "Female" ...
 $ cardiogenicShock: chr  "No" "No" "Yes" "No" ...
 $ entry           : chr  "Femoral" "Femoral" "Femoral" "Femoral" ...
 $ Dx              : chr  "STEMI" "STEMI" "STEMI" "STEMI" ...
 $ EF              : num  18 18.4 20 21.8 21.8 22 24.7 26.6 28.5 31.1 ...
 $ height          : num  168 148 NA 165 162 153 167 160 152 168 ...
 $ weight          : num  72 48 NA 50 64 59 78 50 67 60 ...
 $ BMI             : num  25.5 21.9 NA 18.4 24.4 ...
 $ obesity         : chr  "Yes" "No" "No" "No" ...
 $ TC              : num  215 NA NA 121 195 184 161 136 239 169 ...
 $ LDLC            : int  154 NA NA 73 151 112 91 88 161 88 ...
 $ HDLC            : int  35 NA NA 20 36 38 34 33 34 54 ...
 $ TG              : int  155 166 NA 89 63 137 196 30 118 141 ...
 $ DM              : chr  "Yes" "No" "No" "No" ...
 $ HBP             : chr  "No" "Yes" "Yes" "No" ...
 $ smoking         : chr  "Smoker" "Never" "Never" "Never" ...


 이제 BMI가 급성 관상동맥 질환에 미치는 영향에 대해서 알아보겠습니다. 우선 boxplot을 그려봅니다.

boxplot(BMI~Dx, outline=FALSE, data=acs)



  여기서 보면 사실 그룹간 유의한 차이는 없어 보입니다. 아무튼 acs 데이터 자체에 BMI 25를 기준으로 비만 여부를 구분했기 때문에 obesity를 기준으로 다항 회귀분석을 해볼 수 있습니다. 결과는 질병 분류이고 독립변수는 비만 유무입니다. 방법은 이항 로지스틱 회귀 분석과 비슷하나 glm 대신 multinom을 사용합니다. 



out=multinom(Dx~factor(obesity),family=binomial,data=acs)
summary(out)
exp(coef(out))
exp(confint(out))

> out=multinom(Dx~factor(obesity),family=binomial,data=acs)
# weights:  9 (4 variable)
initial  value 941.510731 
final  value 881.798002 
converged
> summary(out)
Call:
multinom(formula = Dx ~ factor(obesity), data = acs, family = binomial)

Coefficients:
                (Intercept) factor(obesity)Yes
STEMI             0.6789012         0.02482306
Unstable Angina   0.8659933         0.28106546

Std. Errors:
                (Intercept) factor(obesity)Yes
STEMI             0.1192421          0.2145262
Unstable Angina   0.1157681          0.2035572

Residual Deviance: 1763.596 
AIC: 1771.596 
> exp(coef(out))
                (Intercept) factor(obesity)Yes
STEMI              1.971710           1.025134
Unstable Angina    2.377366           1.324540
> exp(confint(out))
, , STEMI

                       2.5 %   97.5 %
(Intercept)        1.5607883 2.490819
factor(obesity)Yes 0.6732486 1.560938

, , Unstable Angina

                       2.5 %   97.5 %
(Intercept)        1.8947596 2.982896
factor(obesity)Yes 0.8887856 1.973937



그냥 보기에도 결과를 어떻게 정리할지 눈에 들어오지 않습니다. 아무튼 이 결과는 비만의 유무에 따라 NSTEMI에 비해 unstable angina나 STEMI가 생길 OR값 (exp(coef(out)))과 그 95% CI 값 (exp(confint(out)))을 보면 각각 1.324540 (95% CI 0.8887856 1.973937) 1.025134 (95% CI 0.6732486 1.560938) 입니다. 헷갈릴 수 있는데, 보통 95% CI 값 중간에 OR 값이 온다는 점을 참조하면 도움이 될 것입니다. (아래 사진 참조) 



 참고로 여기서는 NSTEMI를 기준으로 삼았지만, 만약 기준을 바꾸고 싶다면 0,1,2로 이름을 바꾸면 0을 기준으로 수치를 알려주게 됩니다. 


 하지만 다항 로지스틱 회귀 분석의 어려움은 결과 변수와 독립 변수의 숫자가 3보다 더 많을 때 발생합니다. 결과가 3x3, 4x4 하는 식으로 복잡해지기 때문이죠. 여기서는 obesity를 정상 (BMI 23이하), 과체중 (23-25) 비만 (25 이상)으로 세 군으로 나눠보겠습니다. 


acs$obesity2[acs$BMI<23 span="">
acs$obesity2[acs$BMI>=23]=1
acs$obesity2[acs$BMI>=25]=2
table(acs$obesity2)

out=multinom(Dx~factor(obesity2),family=binomial,data=acs)
summary(out)
exp(coef(out))
exp(confint(out))


 > exp(coef(out))
                (Intercept) factor(obesity2)1 factor(obesity2)2
STEMI               1.90741          0.851940          1.059696
Unstable Angina     2.12963          1.138696          1.478629
> exp(confint(out))
, , STEMI

                      2.5 %   97.5 %
(Intercept)       1.3722523 2.651272
factor(obesity2)1 0.5098546 1.423547
factor(obesity2)2 0.6555833 1.712910

, , Unstable Angina

                      2.5 %   97.5 %
(Intercept)       1.5412883 2.942555
factor(obesity2)1 0.6975375 1.858866
factor(obesity2)2 0.9327947 2.343864


 읽는 법은 앞서와 동일하지만, 결과가 두 배로 늘어났습니다. 이렇기 때문에 다항 로지스틱 회귀 분석은 반드시 써야 할 경우가 아니라면 잘 사용하지 않게 되는 것입니다. 차라리 결과를 심근 경색과 불안정 협심증으로 이분형으로 바꾸는 편이 결과가 더 깔끔할 수 있습니다. 아무튼 어떻게 사용하는지 알고 있으면 혹시라도 도움이 될지 모릅니다. 


 참고로 이항 로지스틱 회귀분석과는 달리 다항 로지스틱 회귀 분석은 모델을 평가할 수 있는 방법이 많지 않은 것 같습니다. 여러 모로 의학 연구에서는 잘 사용되지 않아 방법을 습득하는데도 다소 어려움이 있습니다. 

댓글

이 블로그의 인기 게시물

세상에서 가장 큰 벌

( Wallace's giant bee, the largest known bee species in the world, is four times larger than a European honeybee(Credit: Clay Bolt) ) (Photographer Clay Bolt snaps some of the first-ever shots of Wallace's giant bee in the wild(Credit: Simon Robson)  월리스의 거대 벌 (Wallace’s giant bee)로 알려진 Megachile pluto는 매우 거대한 인도네시아 벌로 세상에서 가장 거대한 말벌과도 경쟁할 수 있는 크기를 지니고 있습니다. 암컷의 경우 몸길이 3.8cm, 날개너비 6.35cm으로 알려진 벌 가운데 가장 거대하지만 수컷의 경우 이보다 작아서 몸길이가 2.3cm 정도입니다. 아무튼 일반 꿀벌의 4배가 넘는 몸길이를 지닌 거대 벌이라고 할 수 있습니다.   메가칠레는 1981년 몇 개의 표본이 발견된 이후 지금까지 추가 발견이 되지 않아 멸종되었다고 보는 과학자들도 있었습니다. 2018년에 eBay에 표본이 나왔지만, 언제 잡힌 것인지는 알 수 없었습니다. 사실 이 벌은 1858년 처음 발견된 이후 1981년에야 다시 발견되었을 만큼 찾기 어려운 희귀종입니다. 그런데 시드니 대학과 국제 야생 동물 보호 협회 (Global Wildlife Conservation)의 연구팀이 오랜 수색 끝에 2019년 인도네시아의 오지에서 메가칠레 암컷을 야생 상태에서 발견하는데 성공했습니다.   메가칠레 암컷은 특이하게도 살아있는 흰개미 둥지가 있는 나무에 둥지를 만들고 살아갑니다. 이들의 거대한 턱은 나무의 수지를 모아 둥지를 짓는데 유리합니다. 하지만 워낙 희귀종이라 이들의 생태에 대해서는 거의 알려진 바가 없습니다.  (동영상)...

몸에 철이 많으면 조기 사망 위험도가 높다?

 철분은 인체에 반드시 필요한 미량 원소입니다. 헤모글로빈에 필수적인 물질이기 때문에 철분 부족은 흔히 빈혈을 부르며 반대로 피를 자꾸 잃는 경우에는 철분 부족 현상이 발생합니다. 하지만 철분 수치가 높다는 것은 반드시 좋은 의미는 아닙니다. 모든 일에는 적당한 수준이 있게 마련이고 철 역시 너무 많으면 여러 가지 질병을 일으킬 수 있습니다. 철 대사에 문제가 생겨 철이 과다하게 축적되는 혈색소증 ( haemochromatosis ) 같은 드문 경우가 아니라도 과도한 철분 섭취나 수혈로 인한 철분 과잉은 건강에 문제를 일으킬 수 있습니다. 하지만 높은 철 농도가 수명에 미치는 영향에 대해서는 잘 알려지지 않았습니다.   하버드 대학의 이야스 다글라스( Iyas Daghlas )와 임페리얼 칼리지 런던의 데펜더 길 ( Dipender Gill )은 체내 철 함유량에 영향을 미치는 유전적 변이와 수명의 관계를 조사했습니다. 연구팀은 48972명의 유전 정보와 혈중 철분 농도, 그리고 기대 수명의 60/90%에서 생존 확률을 조사했습니다. 그 결과 유전자로 예측한 혈중 철분 농도가 증가할수록 오래 생존할 가능성이 낮은 것으로 나타났습니다. 이것이 유전자 자체 때문인지 아니면 높은 혈중/체내 철 농도 때문인지는 명확하지 않지만, 높은 혈중 철 농도가 꼭 좋은 뜻이 아니라는 것을 시사하는 결과입니다.   연구팀은 이 데이터를 근거로 건강한 사람이 영양제나 종합 비타민제를 통해 과도한 철분을 섭취할 이유는 없다고 주장했습니다. 어쩌면 높은 철 농도가 조기 사망 위험도를 높일지도 모르기 때문입니다. 그러나 임산부나 빈혈 환자 등 진짜 철분이 필요한 사람들까지 철분 섭취를 꺼릴 필요가 없다는 점도 강조했습니다. 연구 내용은 정상보다 높은 혈중 철농도가 오래 유지되는 경우를 가정한 것으로 본래 철분 부족이 있는 사람을 대상으로 한 것이 아니기 때문입니다. 낮은 철분 농도와 빈혈이 건강에 미치는 악영향은 이미 잘 알려져 있기 때문에 철...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...