기본 콘텐츠로 건너뛰기

이상치의 처리 (4)


 이제 앞서 예제로 쓴 다이아몬드 데이터에서 carat의 이상치를 위에서 열거한 방법으로 찾아보겠습니다. 데이터 해석을 간단하게 하기 위해 일단 다이아몬드 캐럿과 가격과의 관계를 알아보되 일부 표본만 추출해서 진행해 보겠습니다. 표본을 50개 정도 추출해서 이상치에 해당하는 데이터를 알아보겠습니다. 그런데 X와 Y, 혹은 독립 변수와 종속 변수 (원인과 결과) 중 어느 것이 이상치에 해당할까요. 


 정답은 둘 다 가능합니다. 예를 들어 비만과 혈압의 관계를 알기 위해 BMI와 수축기/이완기 혈압의 관계를 알아 볼 때 BMI 150이나 수축기 혈압 300mmHg 모두 있을 수 없는 값이므로 이상치에 속합니다. 캐럿 역시 100캐럿 다이아몬드나 100만 달러 다이아몬드가 있을 수 있는 값이긴 하나 극히 예외적인 경우에 속하므로 이를 이상치로 판단해도 무방할 것입니다. 일단 한번 데이터를 보겠습니다. 


set.seed(3311)
diamonds1<-sample 50="" diamonds="" nrow="" span="">
D1<-diamonds diamonds1="" span="">
D1

> D1
# A tibble: 50 x 10
   carat cut       color clarity depth table price     x     y     z
             
 1 0.600 Ideal     F     VS1      62.9  57.0  2142  5.35  5.31  3.35
 2 0.550 Very Good E     SI1      64.2  55.0  1417  5.18  5.20  3.33
 3 1.01  Ideal     D     SI2      62.5  57.0  5206  6.39  6.35  3.98
 4 0.330 Ideal     G     IF       60.9  57.0   946  4.45  4.48  2.72
 5 0.910 Very Good E     SI2      58.6  63.0  2963  6.38  6.32  3.72
 6 0.910 Good      G     VVS2     64.1  58.0  4543  6.06  6.10  3.90
 7 1.50  Good      F     VS2      63.6  55.0 13853  7.27  7.22  4.61
 8 0.740 Ideal     D     VS2      61.8  56.0  3858  5.79  5.82  3.59
 9 1.51  Premium   H     SI2      60.4  59.0  7864  7.30  7.27  4.40
10 0.450 Good      E     VS1      61.7  63.0  1241  4.88  4.91  3.02
# ... with 40 more rows


 이 코드를 통해 제대로 추출이 되었는지 확인한 후 연관성을 확인하기 위해 기본 플롯을 그립니다. 

plot(D1$carat, D1$price)  




 이 표에서는 가격과 캐럿 사이의 상관 관계가 확인됩니다. 당연한 이야기지만, 캐럿이 증가하면 다이아몬드 가격이 증가하는 것으로 보입니다. 그리고 대부분의 다이아몬드는 1.5 캐럿 이하 10000달러 이하라는 것도 알 수 있습니다. 이제 Z 값과 수정된 Z값을 알아보겠습니다. 이상치 판정 기준은 절대값 3으로 하겠습니다. 다만 그 전에 자료 분포를 보기 위해 박스 플롯을 그려 보겠습니다. 


par(mfrow=c(1,2))

boxplot(D1$carat,col="yellow")
text(0.7,median(D1$carat,na.rm=T),"median")
text(0.7,quantile(D1$carat,na.rm=T)[2],"Q1")
text(0.7,quantile(D1$carat,na.rm=T)[4],"Q3")
text(0.7,fivenum(D1$carat,na.rm=T)[2]-1.5*IQR(diamonds$carat,na.rm=T),"(1)Q1-1.5*IQR")
text(0.7,fivenum(D1$carat,na.rm=T)[4]+1.5*IQR(diamonds$carat,na.rm=T),"(2)Q3+1.5*IQR")

boxplot(D1$price,col="yellow")
text(0.7,median(D1$price,na.rm=T),"median")
text(0.7,quantile(D1$price,na.rm=T)[2],"Q1")
text(0.7,quantile(D1$price,na.rm=T)[4],"Q3")
text(0.7,fivenum(D1$price,na.rm=T)[2]-1.5*IQR(diamonds$price,na.rm=T),"(1)Q1-1.5*IQR")
text(0.7,fivenum(D1$price,na.rm=T)[4]+1.5*IQR(diamonds$price,na.rm=T),"(2)Q3+1.5*IQR")




 아무래도 캐럿보다는 가격쪽에 더 많은 이상치가 있어 보입니다. 이제 Z값과 수정된 Z값으로 이상치를 판별해 보겠습니다. 


require(outliers)

Z<-scores carat="" span="" type="z">
which(Z %in% Z[Z>3|Z< -3])

Zm<-scores carat="" span="" type="mad">
which(Zm %in% Zm[Zm>3|Zm< -3])


> Z<-scores carat="" span="" type="z">
> which(Z %in% Z[Z>3|Z< -3])
[1] 21
> Zm<-scores carat="" span="" type="mad">
> which(Zm %in% Zm[Zm>3|Zm< -3])
[1] 21


 두 가지 방법 모두 21번째 관측치가 이상치라고 하네요. 어떤 값인지 살펴보겠습니다. 


> D1[21,]
# A tibble: 1 x 10
  carat cut       color clarity depth table price     x     y     z
           
1  2.48 Very Good F     SI2      63.4  56.0 18692  8.64  8.55  5.45


 2.48 캐럿 다이아몬드로 컷팅도 좋고 가격도 18692달러나 됩니다. 당연히 비쌀만 하겠죠. 따라서 데이터 자체가 잘못된 것은 아닙니다. 앞서 포스팅에서 빌게이츠처럼 자료에는 문제가 없지만, 이 사람을 포함해서 소수의 사람에서 평균 소득을 구하는 일은 상당히 편향된 자료가 될 가능성이 큽니다. 그러면 이 수치를 제외시켜야 할까요. 판단을 위해 가격에서도 이상치를 구해보겠습니다. 


> Z<-scores price="" span="" type="z">
> which(Z %in% Z[Z>3|Z< -3])
[1] 21
> Zm<-scores price="" span="" type="mad">
> which(Zm %in% Zm[Zm>3|Zm< -3])
[1]  7 14 18 21 24

 수정된 Z 값에서 예상보다 많은 이상치가 나왔습니다. 어떤 값인지 확인해 보겠습니다. 


> D2<-subset zm="">3|Zm< -3)
> D2
# A tibble: 5 x 10
  carat cut       color clarity depth table price     x     y     z
           
1  1.50 Good      F     VS2      63.6  55.0 13853  7.27  7.22  4.61
2  1.28 Very Good G     VVS1     60.3  59.0 11214  6.99  7.03  4.23
3  2.00 Premium   H     SI2      60.7  60.0 15312  8.07  8.11  4.91
4  2.48 Very Good F     SI2      63.4  56.0 18692  8.64  8.55  5.45
5  2.05 Premium   G     SI1      61.6  59.0 15291  8.20  8.16  5.04


 이제보니 1.5 캐럿 이상인 다이아몬드와 1만 달러 이상인 다이아몬드가 이상치로 잡혔습니다. 이는 수정된 Z 값이 평균보다 훨씬 낮은 중앙값을 이용하기 때문에 생기는 현상입니다. 그런데 이상치가 전체의 10%나 되서 과연 다 제거해야 하는지 의문이 생길 수 있습니다. 이를 모두 제거할 경우 사실상 데이터가 달라지는 것이나 마찬가지입니다. 판단을 위해 IQR을 이용한 이상치도 같이 구해 봅니다. 


removeOutliers = function(x) { 
    qnt = quantile(x, probs=c(.25, .75))
    iqt = 1.5 * IQR(x)
    y = x 
    y[x < (qnt[1] - iqt)] = NA
    y[x > (qnt[2] + iqt)] = NA
  return(y)
  
}

D1$carat2<-removeoutliers carat="" span="">
sum(is.na(D1$carat2))
D3<-d1 carat2="" is.na="" span="">
D3

D1$price2<-removeoutliers price="" span="">
sum(is.na(D1$price2))
D3<-d1 is.na="" price2="" span="">
D3

 여기서 결측치가 있는 값을 구하기 위해서 subset이 아니라 is.na 명령어를 사용했다는 점에 주목해야 합니다. 이는 유용한 팁 가운데 하나입니다. 아무튼 결과를 보겠습니다. 


> D1$carat2<-removeoutliers carat="" span="">
> sum(is.na(D1$carat2))
[1] 1
> D3<-d1 carat2="" is.na="" span="">
> D3
# A tibble: 1 x 11
  carat cut       color clarity depth table price     x     y     z carat2
             
1  2.48 Very Good F     SI2      63.4  56.0 18692  8.64  8.55  5.45     NA
> D1$price2<-removeoutliers price="" span="">
> sum(is.na(D1$price2))
[1] 4
> D3<-d1 is.na="" price2="" span="">
> D3
# A tibble: 4 x 12
  carat cut       color clarity depth table price     x     y     z carat2 price2
               
1  1.50 Good      F     VS2      63.6  55.0 13853  7.27  7.22  4.61   1.50     NA
2  2.00 Premium   H     SI2      60.7  60.0 15312  8.07  8.11  4.91   2.00     NA
3  2.48 Very Good F     SI2      63.4  56.0 18692  8.64  8.55  5.45  NA        NA
4  2.05 Premium   G     SI1      61.6  59.0 15291  8.20  8.16  5.04   2.05     NA




 어떻게 보면 비슷한 결과입니다. 전체적으로 봤을 때 21번 관측치, 즉 2.48캐럿 다이아몬드는 전체 데이터와 거리가 있는 이상치로 보입니다. 과연 제거가 필요할까요. 이를 알기 위해서 분석이 필요합니다. 

댓글

이 블로그의 인기 게시물

통계 공부는 어떻게 하는 것이 좋을까?

 사실 저도 통계 전문가가 아니기 때문에 이런 주제로 글을 쓰기가 다소 애매하지만, 그래도 누군가에게 도움이 될 수 있다고 생각해서 글을 올려봅니다. 통계학, 특히 수학적인 의미에서의 통계학을 공부하게 되는 계기는 사람마다 다르긴 하겠지만, 아마도 비교적 흔하고 난감한 경우는 논문을 써야 하는 경우일 것입니다. 오늘날의 학문적 연구는 집단간 혹은 방법간의 차이가 있다는 것을 객관적으로 보여줘야 하는데, 그려면 불가피하게 통계적인 방법을 쓸 수 밖에 없게 됩니다. 이런 이유로 분야와 주제에 따라서는 아닌 경우도 있겠지만, 상당수 논문에서는 통계학이 들어가게 됩니다.   문제는 데이터를 처리하고 분석하는 방법을 익히는 데도 상당한 시간과 노력이 필요하다는 점입니다. 물론 대부분의 학과에서 통계 수업이 들어가기는 하지만, 그것만으로는 충분하지 않은 경우가 많습니다. 대학 학부 과정에서는 대부분 논문 제출이 필요없거나 필요하다고 해도 그렇게 높은 수준을 요구하지 않지만, 대학원 이상 과정에서는 SCI/SCIE 급 논문이 필요하게 되어 처음 논문을 작성하는 입장에서는 상당히 부담되는 상황에 놓이게 됩니다.  그리고 이후 논문을 계속해서 쓰게 될 경우 통계 문제는 항상 나를 따라다니면서 괴롭히게 될 것입니다.  사정이 이렇다보니 간혹 통계 공부를 어떻게 하는 것이 좋겠냐는 질문이 들어옵니다. 사실 저는 통계 전문가라고 하기에는 실력은 모자라지만, 대신 앞서서 삽질을 한 경험이 있기 때문에 몇 가지 조언을 해줄 수 있을 것 같습니다.  1. 입문자를 위한 책을 추천해달라  사실 예습을 위해서 미리 공부하는 것은 추천하지 않습니다. 기본적인 통계는 학과별로 다르지 않더라도 주로 쓰는 분석방법은 분야별로 상당한 차이가 있을 수 있어 결국은 자신이 주로 하는 부분을 잘 해야 하기 때문입니다. 그러기 위해서는 학과 커리큘럼에 들어있는 통계 수업을 듣는 것이 더 유리합니다...

9000년 전 소녀의 모습을 복원하다.

( The final reconstruction. Credit: Oscar Nilsson )  그리스 아테나 대학과 스웨덴 연구자들이 1993년 발견된 선사 시대 소녀의 모습을 마치 살아있는 것처럼 복원하는데 성공했습니다. 이 유골은 그리스의 테살리아 지역의 테오페트라 동굴 ( Theopetra Cave )에서 발견된 것으로 연대는 9000년 전으로 추정됩니다. 유골의 주인공은 15-18세 사이의 소녀로 정확한 사인은 알 수 없으나 괴혈병, 빈혈, 관절 질환을 앓고 있었던 것으로 확인되었습니다.   이 소녀가 살았던 시기는 유럽 지역에서 수렵 채집인이 초기 농경으로 이전하는 시기였습니다. 다른 시기와 마찬가지로 이 시기의 사람들도 젊은 시절에 다양한 질환에 시달렸을 것이며 평균 수명 역시 매우 짧았을 것입니다. 비록 젊은 나이에 죽기는 했지만, 당시에는 이런 경우가 드물지 않았을 것이라는 이야기죠.   아무튼 문명의 새벽에 해당하는 시점에 살았기 때문에 이 소녀는 Dawn (그리스어로는  Avgi)라고 이름지어졌다고 합니다. 연구팀은 유골에 대한 상세한 스캔과 3D 프린팅 기술을 적용해서 살아있을 당시의 모습을 매우 현실적으로 복원했습니다. 그리고 그 결과 나타난 모습은.... 당시의 거친 환경을 보여주는 듯 합니다. 긴 턱은 당시를 살았던 사람이 대부분 그랬듯이 질긴 먹이를 오래 씹기 위한 것으로 보입니다.   강하고 억센 10대 소녀(?)의 모습은 당시 살아남기 위해서는 강해야 했다는 점을 말해주는 듯 합니다. 이렇게 억세보이는 주인공이라도 당시에는 전염병이나 혹은 기아에서 자유롭지는 못했기 때문에 결국 평균 수명은 길지 못했겠죠. 외모 만으로 평가해서는 안되겠지만, 당시의 거친 시대상을 보여주는 듯 해 흥미롭습니다.   참고  https://phys.org/news/2018-01-te...

사막에서 식물을 재배하는 온실 Ecodome

 지구 기후가 변해가면서 일부 지역에서는 비가 더 많이 내리지만 반대로 비가 적게 내리는 지역도 생기고 있습니다. 일부 아프리카 개도국에서는 이에 더해서 인구 증가로 인해 식량과 물이 모두 크게 부족한 현상이 지속되고 있습니다. 이를 해결하기 위한 여러 가지 아이디어들이 나오고 있는데, 그 중 하나가 사막 온실입니다.   사막에 온실을 건설한다는 아이디어는 이상해 보이지만, 실제로는 다양한 사막 온실이 식물재배를 위해서 시도되고 있습니다. 사막 온실의 아이디어는 낮과 밤의 일교차가 큰 사막 환경에서 작물을 재배함과 동시에 물이 증발해서 사라지는 것을 막는데 그 중요한 이유가 있습니다.   사막화가 진행 중인 에티오피아의 곤다르 대학( University of Gondar's Faculty of Agriculture )의 연구자들은 사막 온실과 이슬을 모으는 장치를 결합한 독특한 사막 온실을 공개했습니다. 이들은 이를 에코돔( Ecodome )이라고 명명했는데, 아직 프로토타입을 건설한 것은 아니지만 그 컨셉을 공개하고 개발에 착수했다고 합니다.   원리는 간단합니다. 사막에 건설된 온실안에서 작물을 키움니다. 이 작물은 광합성을 하면서 수증기를 밖으로 내보네게 되지만, 온실 때문에 이 수증기를 달아나지 못하고 갖히게 됩니다. 밤이 되면 이 수증기는 다시 응결됩니다. 그리고 동시에 에코돔의 가장 위에 있는 부분이 열리면서 여기로 찬 공기가 들어와 외부 공기에 있는 수증기가 응결되어 에코돔 내부로 들어옵니다. 그렇게 얻은 물은 식수는 물론 식물 재배 모두에 사용 가능합니다.  (에코돔의 컨셉.  출처 : Roots Up)   (동영상)   이 컨셉은 마치 사막 온실과 이슬을 모으는 담수 장치를 합쳐놓은 것이라고 말할 수 있습니다. 물론 실제로도 잘 작동할지는 직접 테스트를 해봐야 알 수...